Event Date/Time
Location
Room 222
Series/Event Type
Abstract:
Many medical interventions today are qualitatively and quantitatively limited by human physical and cognitive capabilities. This talk will discuss several robot-assisted intervention techniques that will extend humans’ ability to carry out interventions more accurately and less invasively. First, I will describe the development of minimally invasive systems that deliver therapy by steering needles through deformable tissue and around internal obstacles to reach specified targets. Second, I will review recent results in haptic (touch) feedback for robot-assisted teleoperated surgery, in particular the display of tissue mechanical properties. Finally, I will demonstrate the use of dynamic models of the body to drive novel rehabilitation strategies. All of these systems incorporate one or more key elements of robotic interventions: (1) quantitative descriptions of patient state, (2) the use of models to plan interventions, (3) the design of devices and control systems that connect information to physical action, and (4) the inclusion of human input in a natural way.