Modeling, Planning, and Control for Robot-Assisted Medical Interventions

Series/Event Type: 


Many medical interventions today are qualitatively and quantitatively limited by human physical and cognitive capabilities. This talk will discuss several robot-assisted intervention techniques that will extend humans’ ability to carry out interventions more accurately and less invasively. First, I will describe the development of minimally invasive systems that deliver therapy by steering needles through deformable tissue and around internal obstacles to reach specified targets. Second, I will review recent results in haptic (touch) feedback for robot-assisted teleoperated surgery, in particular the display of tissue mechanical properties. Finally, I will demonstrate the use of dynamic models of the body to drive novel rehabilitation strategies. All of these systems incorporate one or more key elements of robotic interventions: (1) quantitative descriptions of patient state, (2) the use of models to plan interventions, (3) the design of devices and control systems that connect information to physical action, and (4) the inclusion of human input in a natural way.

Allison Okamura, Stanford University
Bowen Hall
Room number or other detail: 
Room 222
Friday, November 13, 2015 - 3:30pm
Faculty Host: 
Hosting Group: 
Dynamics and Control

Speaker Bio

Allison M. Okamura received the BS degree from the University of California at Berkeley in 1994, and the MS and PhD degrees from Stanford University in 1996 and 2000, respectively, all in mechanical engineering. She is currently a professor in the mechanical engineering department at Stanford University, with a courtesy appointment in Computer Science. She is Editor-in-Chief of the IEEE International Conference on Robotics and Automation and an IEEE Fellow. Her academic interests include haptics, teleoperation, virtual and augmented reality, medical robotics, neuromechanics and rehabilitation, prosthetics, and engineering education. Outside academia, she enjoys spending time with her husband and two children, running, and playing ice hockey. For more information about her research, please see the Collaborative Haptics and Robotics in Medicine (CHARM) Laboratory website: