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a b s t r a c t

Wederive expressions for the first threemoments of the decision time (DT) distribution produced via first
threshold crossings by sample paths of a drift-diffusion equation. The ‘‘pure’’ and ‘‘extended’’ diffusion
processes are widely used to model two-alternative forced choice decisions, and, while simple formulae
for accuracy, mean DT and coefficient of variation are readily available, third and higher moments
and conditioned moments are not generally available. We provide explicit formulae for these, describe
their behaviors as drift rates and starting points approach interesting limits, and, with the support of
numerical simulations, discuss how trial-to-trial variability of drift rates, starting points, and non-decision
times affect these behaviors in the extended diffusion model. Both unconditioned moments and those
conditioned on correct and erroneous responses are treated. We argue that the results will assist in
exploring mechanisms of evidence accumulation and in fitting parameters to experimental data.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we derive explicit expressions for the mean,
variance, coefficient of variation and skewness of decision times
(DTs) predicted by the stochastic differential equation (SDE)

dx = a dt + σ dW , x(0) = x0, (1)

which models accumulation of the difference x(t) between the
streams of evidence in two-alternative forced-choice tasks. An
example of such a perceptual decision-making task is one in which
a participant determines if the image on the screen hasmorewhite
or black pixels (e.g., Ratcliff & Rouder, 1998). Here drift rate a
and standard deviation σ are constants, dW denotes independent
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random (Wiener) increments, and dx is the change in evidence
during the time interval (t, t + dt). Decision times (DTs) are
determined by first passages through upper and lower thresholds
x = +z and −z that respectively correspond to correct responses
and errors, between which the starting point x0 is assumed to lie.
Thus,without loss of generalitywemay set a > 0, althoughwewill
also consider limits a → 0. Predictions of response times (RTs) for
comparison to behavioral data are obtained by adding toDTs a non-
decision latency, Tnd, to account for sensory and motor processes.

SDEs like Eq. (1) are variously called diffusion or drift-diffusion
models (DDMs); in Bogacz, Brown, Moehlis, Holmes, and Cohen
(2006) Eq. (1) was named the pure DDM to distinguish it from
Ratcliff’s extended diffusion model (Ratcliff, 1978), which allows
trial to trial variability in drift rates and starting points x0. See
Bogacz et al. (2006), Ratcliff (1978) and Ratcliff and Smith (2004)
for background on diffusionmodels, and note that several different
variable-naming conventions are used in parameterizing DDMs,
e.g. in Ratcliff (1978), Ratcliff and Smith (2004) andWagenmakers,
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Grasman, and Molenaar (2005) v and s replace a and σ , and
thresholds are set at x = 0 and x = a with x0 ∈ [0, a]; in Bogacz
et al. (2006) a and σ are named A and c.

Many of the following results have appeared in the stochastic
processes literature, or are implicit in it, and some have appeared
in the psychological literature (e.g. Grasman, Wagenmakers, & van
der Maas, 2009; Ratcliff, 1978; Wagenmakers et al., 2005). How-
ever, their dependence on key parameters such as threshold and
starting point and behaviors in the limits of low and high drift
rates have not been fully explored (see Wagenmakers et al., 2005
for some cases of a → 0). Nor are we aware of explicit deriva-
tions of third order moments. Here we provide these, and also
prove a Proposition that describes the structure of the coefficient
of variation (CV) for DTs predicted by Eq. (1), relating it to the
CV for a single-threshold DDM. We end by considering the ex-
tended DDM, introduced in Ratcliff (1978), showing how trial-to-
trial variability of drift rates and starting points affects the results
for the pure DDM and examining the effects of non-decision la-
tency on response times. We summarize the expressions for the
unconditioned and conditioned moments of DTs for the pure DDM
in Table 1. The MatLab and R implementation of analytic and
semi-analytic expressions for the conditioned and unconditioned
moments of DTs for the pure and extended DDMs studied here
is available at: https://github.com/PrincetonUniversity/higher_
moments_ddm.

Notation and units
We start by reviewing definitions and dimensional units, and

establishing notation. For a random variable ξ , we define the nth
non-central moment by E[ξ n

] and the nth central moment by
E[(ξ − E[ξ ])n]. The first central moment is zero and the second
central moment is the variance. The coefficient of variation (CV)
of ξ is defined as the ratio of standard deviation to mean of ξ ,
i.e., CV =


E[(ξ − E[ξ ])2]/E[ξ ]. Similarly, the skewness of ξ is

defined as the ratio of the third central moment to the cube of the
standard deviation of ξ :

skew =
E[(ξ − E[ξ ])3]

E[(ξ − E[ξ ])2]3/2
.

The variable x(t) and thresholds ±z in Eq. (1) are dimensionless,
while the parameters a and σ have dimensions [time]−1 and
[time]−

1
2 respectively. When providing numerical examples we

will work in secs. For a > 0 we define the normalized threshold
kz and starting point kx:

kz =
az
σ 2

≥ 0 and kx =
ax0
σ 2

∈ (−kz, kz); (2)

these nondimensional parameters will allow us to give relatively
compact expressions.

2. The single-threshold DDM

Eq. (1)with a single upper threshold z > 0 necessarily produces
only correct responses in decision tasks, but it is of interest because
it provides a simple approximation of the double-threshold DDM
when accuracy is at ceiling and errors due to passages through
the lower threshold are rare. Specifically, for a > 0, DTs of this
model with starting point x0 are described by the Wald (inverse-
Gaussian) distribution (Borodin & Salminen, 2002, Eq. (2.0.2); Luce,
1986; Wald, 1947):

p(t) =
z − x0

σ


1

2π t3
exp


−(z − x0 − at)2

2σ 2t


. (3)
The mean DT, its variance, and CV are:

E[DT] =
σ 2

a2
(kz − kx), Var[DT] =

σ 4

a4
(kz − kx), and

CV =

√
Var[DT]
E[DT]

=
1

√
kz − kx

,

(4)

and the skewness is

3
√
kz − kx

(= 3 CV). (5)

In the limit a → 0+, the distribution (3) converges to the Lévy
distribution, and in this limit none of themoments exist. However,
as shown below, moments of the double threshold DDM exist in
this limit.

The single threshold process has been proposed as a model for
interval timing (Balci & Simen, 2014; Luzardo, Ludvig, & Rivest,
2013; Simen, Balci, deSouza, Cohen, & Holmes, 2011; Simen,
Vlasov, & Papadakis, 2016). Interval timing, loosely defined, is the
capacity either to make a response or judgment at a specific time
relative to some event in the environment, or simply to estimate
inter-event durations. Classic timing tasks include ‘‘production’’
tasks, such as the Fixed Interval (FI) task, in which a participant
receives a reward for any response produced after a delay of a given
duration since the last reward was received (Ferster & Skinner,
1957), and discrimination tasks, in which two different stimulus
durations are compared to seewhich is longer (see Creelman, 1962
and Treisman, 1963 for historical reviews of early human timing
research). Production tasks can be modeled similarly to decision
tasks by a diffusion model: instead of accumulating evidence
about a perceptual choice, a timing diffusion model accumulates a
steady ‘‘clock signal’’ toward a threshold for responding (Creelman,
1962; Gibbon, Church, & Meck, 1984; Killeen & Fetterman,
1988; Treisman, 1963). The resulting production times, relative
to stimulus onset, are then comparable to perceptual decision-
making response times, typically yielding a slightly positively
skewed Gaussian density (Gibbon & Church, 1990). Simen, Rivest,
Ludvig, Balci, and Killeen (2013) show that the single-threshold
DDM can fit RT data from a variety of interval timing experiments
when the starting point is set to 0, drift is set equal to threshold
over duration (a = z/T , with T = target duration), and
normalized thresholds kz are set to high values, typically of order
20 (see Simen et al., 2011). In contrast, kz is usually much lower
in fits of typical two-choice decision data, typically of order 1.
Noise σ is typically fixed at 0.1 in the literature (Vandekerckhove
& Tuerlinckx, 2007) and fitted thresholds typically range from 0.05
to 0.15; see, e.g. Balci et al. (2011), Bogacz, Hu, Holmes, and Cohen
(2010), Dutilh, Vandekerckhove, Tuerlinckx, and Wagenmakers
(2009) and Ratcliff (2014). Despite this difference, DDM can be
fitted to both two-choice decision RTs and timed production RTs
in humans with suitably larger thresholds for timing (Simen et al.,
2016), suggesting that both tasks may be accomplished by similar
accumulation processes.

3. The double-threshold DDM: Unconditioned moments of
decision time

We now turn to the double-threshold DDM and derive
unconditioned moments of decision time. The DT distribution for
the double-threshold DDM may be expressed as a convergent
series (Ratcliff, 1978, Appendix), and successive moments of the
unconditioned DT (i.e. averaged over correct responses and errors)
may be obtained by solving boundary value problems for a
sequence of linear ordinary differential equations (ODEs) derived
from the backwards Fokker–Planck or Kolmogorov equation
(Gardiner, 2009, Chap. 5).

https://github.com/PrincetonUniversity/higher_moments_ddm
https://github.com/PrincetonUniversity/higher_moments_ddm
https://github.com/PrincetonUniversity/higher_moments_ddm
https://github.com/PrincetonUniversity/higher_moments_ddm
https://github.com/PrincetonUniversity/higher_moments_ddm
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Table 1
Summary of expressions of error rate and moments of decision time.

1-threshold 2-threshold

Error rate
ER NA e−2kx −e−2kz

e2kz −e−2kz

Mean
E[DT] σ 2

a2
(kz − kx) σ 2

a2

kz coth(2kz) − kze−2kx csch(2kz) − kx


E[DT]+ NA σ 2

a2 (2kz coth(2kz) − (kx + kz) coth(kx + kz))
Variance
Var σ 4

a4
(kz − kx) see Eq. (10)

Var+ NA see Eq. (31)
Coefficient of Variation
CV 1

√
kz−kx

see Eq. (13)
CV+ NA see Eq. (33)
Skewness
Skew × Var3/2 3σ 6

a6
(kz−kx) see Eq. (21)

Skew+ × Var3/2+ NA see Eq. (36)
3.1. Error rate and expected decision time

The expressions for error rate and mean decision time are well
known, although the following forms aremore compact than those
given in Bogacz et al. (2006), for example:

ER =
e−2kx − e−2kz

e2kz − e−2kz
, (6)

E[DT] =
σ 2

a2

kz coth(2kz) − kze−2kxcsch(2kz) − kx


. (7)

In Appendix A we show that these expressions agree with the
analogous ones of Bogacz et al. (2006).

For an unbiased starting point kx = 0 the mean decision time
becomes

E[DT] =
σ 2kz
a2

tanh(kz), (8)

and in the limit a → 0 (kz → 0, kx → 0) we have

ER =
kz − kx
2kz

=
z − x0
2z

and

E[DT] =
σ 2(k2z − k2x)

a2
=

z2 − x20
σ 2

.

(9)

Expressions for the error rate and unconditioned moments of
decision time are illustrated in Figs. 1 and 2.

3.2. Variance and coefficient of variation of decision time

We derive the following expression for the unconditioned
variance of decision time in Appendix B:

Var =
σ 4

a4

3k2z csch

2(2kz) − 2k2z e
−2kxcsch(2kz) coth(2kz)

− 4kzkxe−2kxcsch(2kz) − k2z e
−4kxcsch2(2kz)

+ kz coth(2kz) − kze−2kxcsch(2kz) − kx

. (10)

For an unbiased starting point kx = 0 Eq. (10) reduces to

Var =
σ 4

a4

2k2z (csch

2(2kz)

− csch(2kz) coth(2kz)) + kz(coth(2kz) − csch(2kz))]

=
σ 4

a4

kz tanh(kz) − k2z sech

2(kz)


=
σ 4

a4


kz(1 − 4kze−2kz − e−4kz )

(1 + e−2kz )2


(11)
(cf. Wagenmakers et al., 2005, Eqs. (10–12)), and in the limit a = 0
we have

Var =
2σ 4(k4z − k4x)

3a4
=

2(z4 − x40)
3σ 4

. (12)

The coefficient of variation can be determined from Eqs. (10)
and (7):

CV =
[Var]

1
2

E[DT]

=


3k2z csch

2(2kz) − 2k2z e
−2kxcsch(2kz) coth(2kz) − · · · − kx

 1
2

kz coth(2kz) − kze−2kxcsch(2kz) − kx
; (13)

the complete numerator appears in brackets in Eq. (10). For kx = 0
Eq. (13) reduces to

CV =


1 − 2kzcsch(2kz)

kz[coth(2kz) − csch(2kz)]

=


1 − 4kze−2kz − e−4kz

kz(1 − e−2kz )2
, (14)

and in the limit a → 0, from Eqs. (12) and (9) we have

CV =


2(z2 + x20)
3(z2 − x20)

→


2
3

as z → ∞ or x0 → 0. (15)

Note that the multiplicative factors σ 2/a2 cancel and that CV
depends only upon the nondimensional threshold and starting
point kz, kx (or x0/z in case a = 0).

If a > 0, as the threshold z increases, E[DT] and Var both
increase, but CV decreases, with the following behaviors in the
limit z → ∞ (kz → ∞) for kx fixed:

E[DT]
kz

→
σ 2

a2
,

Var
kz

→
σ 4

a4
and CV → k

−
1
2

z ; (16)

these behaviors follow from the facts that kmz csch
n(2kz) ∼

kmz e
−2nkz and coth(2kz) ∼ 1 for large kz . For a = 0, E[DT] and

Var also increase with z, as one sees from Eqs. (9) and (12), but CV
approaches the limit

√
2/3 (Eq. (15)). In Section 5 we describe the

behavior of the CVwith unbiased starting point kx = 0 throughout
the range kz ∈ (0, ∞), and show that the CV of the single threshold
DDM provides an upper bound for Eq. (14).
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(a) Expected DT. (b) Expected DT conditioned on correct decision. (c) Expected DT conditioned on error.

(d) Variance of DT. (e) Variance of DT conditioned on correct
decision.

(f) Variance of DT conditioned on error.

(g) CV of DT. (h) CV of DT conditioned on correct decision. (i) CV of DT conditioned on error.

Fig. 1. Expected decision times, variances and CVs of decision times for a DDM with a = 0.2, σ = 0.1, and x0 = −0.01, showing dependence on threshold z. Solid curves
represent functions derived in Sections 3 and 4; dashed line segments connect point values obtained by 10,000Monte-Carlo simulations of Eq. (1). Note the non-monotonicity
evident in panel h.
3.3. Third moment and skewness of decision time

We end this section by computing the expression for skewness.
The third moment of decision time can be computed by solving
a boundary value problem analogous to that in Appendix B.
However, this computation is very tedious. Instead we obtain
skewness from the non-central third moments of DTs conditioned
on correct responses and errors derived in Section 4 (this
also illustrates the relationships between unconditioned and
conditionedmoments). Introducing the notation τ for DT, the non-
central third moments can be written as

E[τ 3
|x(τ ) = z]

= Skew+Var
3/2
+ + 3Var+ E[DT]+ + E[DT]3

+
, and (17)

E[τ 3
|x(τ ) = −z]

= Skew−Var
3/2
− + 3Var− E[DT]− + E[DT]3

−
, (18)

where E[DT]±,Var±, Skew± denote expected value, variance, and
skewness of DT conditioned on correct responses and errors,
respectively. Summing appropriate fractions of these conditioned
moments gives the unconditioned third moment

E[τ 3
] = (1 − ER) × E[τ 3

|x(τ ) = z]

+ ER × E[τ 3
|x(τ ) = −z], (19)
from which skewness can be derived as follows:

Skew = E


τ − E[DT]

Var
1
2

3


=
E[τ 3

] − 3VarE[DT] − E[DT]3

Var
3
2

. (20)

Substituting the expressions (6) for ER and (29), (31) and (36)
for conditioned moments from Section 4 into Eqs. (17)–(19), and
using the expressions (7) and (10) for themean and variance of DT,
we obtain

E[τ 3
] − 3VarE[DT] − E[DT]3

=
σ 6

a6


(24kxk2z + 6k2z − 12k3z )e

−2kz−4kx

+ (24k2xkz + 24kxkz − 16k3z + 6kz)e−2kx

− (12k2xkz + 12kxk2z + 12kxkz + 4k3z + 6k2z + 3kz)e4kz−2kx

− (24kxk2z + 6k2z + 12k3z )e
2kz−4kx

− 8k3z e
−6kx − 3kz cosh(2kz) + 3kz cosh(6kz)

+ 9kx sinh(2kz) − 3kx sinh(6kz) + 56k3z cosh(2kz)
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(a) Third central moment of DT. (b) Third central moment of DT conditioned on
correct decision.

(c) Third central moment of DT conditioned on
incorrect decision.

(d) Skewness of DT. (e) Skewness of DT conditioned on correct
decision.

(f) Skewness of DT conditioned on incorrect
decision.

Fig. 2. Third central moments and skewnesses of decision times for a DDM with a = 0.2, σ = 0.1, and x0 = −0.01, showing dependence on threshold z. Solid curves
represent functions derived in Sections 3 and 4; dashed line segments connect point values obtained by 10,000 Monte-Carlo simulations of Eq. (1).
+ 36k2z sinh(2kz) − (3kz − 6k2z + 4k3z + 12kxkz

− 12kxk2z + 12k2xkz)e
−4kz−2kx

 csch3(2kz)
4


. (21)

Finally, skewness may be obtained by substituting Eqs. (10) and
(21) into Eq. (20). After substitution, the σ 6/a6 factors cancel out
so that, like CV, skewness depends only on kz and kx.

For an unbiased starting point x0 = kx = 0, Eq. (21) can be
simplified to

E[τ 3
] − 3VarE[DT] − E[DT]3

=
σ 6

a6


3kz tanh(kz) − 3k2z sech

2(kz) − 2k3z tanh(kz)sech2(kz)

.

(22)

We also note that the limits of the double-threshold moments
approach those of the single-threshold moments as kz → ∞ with
kx fixed. Specifically:

E[DT]
kz

→
σ 2

a2
,

Var
kz

→
σ 4

a4
,

CV → k
−

1
2

z and Skew → 3k
−

1
2

z = 3 CV.

(23)

In the limit a → 0, we obtain

E[τ 3
] − 3VarE[DT] − E[DT]3 =

16(z6 − x60)
σ 6

, and

Skew =


96
25

(z6 − x60)
(z4 − x40)3/2

,

(24)

and the skewness to CV ratio is 12/5 as z → ∞ or x0 → 0.
Two further limits are of interest, those in which the starting

point approaches either threshold: kx → ±kz with kz fixed and
finite. In this case ER → 0 or 1, E[DT] → 0, CV → ∞, and Skew
→ ∞. Letting kx = ±kz(1− ϵ) and expanding for small ϵ ≥ 0, we
have

E[DT] =
σ 2

a2

kz coth(2kz) − kze∓2kz (1−ϵ)csch(2kz) ∓ kz(1 − ϵ)


=

σ 2

a2


±1 −

4kz
e±4kz − 1


(kz ∓ kx) + O(|kz ∓ kx|2) → 0+.

(25)

Similarly, for the variance and third central moment, we have

Var =
σ 2

a2


∓8k2z (1 + 3e±4kz )

(e±4kz − 1)2
+

4kz
e±4kz − 1

± 1


× (kz ∓ kx) + O(|kz ∓ kx|2) → 0+, (26)

E[(τ − E[τ ])3] = ∓
σ 3

a3

18 sinh(2kz) − 6 sinh(6kz)

+ e±2kz (112k3z − 12kz) + 24kze∓kz

− 12kze−6kz + 256k3z e
∓2kz + 16k3z e

∓6kz


× (kz ∓ kx) + O(|kz ∓ kx|2) → 0+, (27)

so that both CV and skewness diverge like |kz ∓ kx|−1/2. However,
the ratio of skewness to CV remains finite as kx → ±kz .

Examples of the functions E[DT], Var, CV, skewness and the
third central moment of DT are plotted vs. threshold z in the left
hand columns of Figs. 1 and 2.

4. The double-threshold DDM: Conditioned moments of deci-
sion time

We now turn to moments of DTs conditioned on correct and
incorrect responses, deriving them from cumulant and moment
generating functions using a method detailed in Appendix C that
requires only successive differentiation (see Gut, 2007, Chap 4,
Section 6 and Gardiner, 2009, Section 2.6). It suffices to consider
only correct decisions, because themoments conditioned on errors
can be obtained by replacing x0 by −x0, or equivalently, kx by
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3)
CV+ =
Var+

1
2

E[DT]+
=


4k2z csch

2(2kz) + 2kz coth(2kz) − (kx + kz)2csch2(kx + kz) − (kx + kz) coth(kx + kz)
1/2

2kz coth(2kz) − (kx + kz) coth(kx + kz)
(3

Box I.
−kx in the following expressions, as demonstrated by the moment
generating functions (58) and (59) in Appendix C. The following
expressions for the conditioned moments of decision time are
illustrated in Figs. 1 and 2.

4.1. Conditioned cumulant generating function and expected decision
time

As derived in Appendix C from Eq. (58), the cumulant-
generating function of DTs conditioned on correct decisions is

K+(α) = C(a, σ , z, x0) + log sinh
 (z + x0)

√
a2 − 2ασ 2

σ 2


− log sinh

2z√a2 − 2ασ 2

σ 2


, (28)

where C(a, σ , z, x0) is a function independent of α that will
disappear when the cumulants are computed by successive
differentiation of K+(α) with respect to α.

The expected DT conditioned on correct decisions is the first
derivative of K+(α) evaluated at α = 0:

E[DT]+ = E[τ |x(τ ) = z] =
d
dα

K+(α)


α=0

=
2z
a

coth
2az

σ 2


−

z + x0
a

coth
a(z + x0)

σ 2


=

σ 2

a2


2kz coth(2kz) − (kx + kz) coth(kx + kz)


, (29)

and it can be verified that in the limit a → 0+

E[DT]+ =
4z2 − (z + x0)2

3σ 2
. (30)

4.2. Conditioned variance and coefficient of variation of decision time

The variance of DT conditioned on correct decisions is the
second derivative of K+(α) at α = 0:

Var+ = Var[τ |x(τ ) = z] =
d2

dα2
K+(α)


α=0

=
4z2

a2
csch2

2za
σ 2


+

2σ 2z
a3

coth
2za

σ 2


−

(z + x0)2

a2
csch2

a(z + x0)
σ 2


−

σ 2(z + x0)
a3

coth
a(z + x0)

σ 2


=

σ 4

a4

4k2z csch

2(2kz) + 2kz coth(2kz)

− (kx + kz)2csch2(kx + kz) − (kx + kz) coth(kx + kz)

;

(31)

in the limit a → 0+:

Var+ =
32z4 − 2(z + x0)4

45σ 4
. (32)

The CV of DT conditioned on correct decisions is therefore CV+

given in Box I; again, the factors σ 2/a2 cancel and the conditioned
CV depends only on kz and kx.
As in Section 3 Eqs. (25)–(26), it can be shown that CV+ diverges
as kx → kz (and hence, by the kx ↔ −kx symmetry, CV− diverges
as kx → −kz). However, the behavior as kx → −kz is more
interesting and quite subtle, especially as kz also becomes small. To
study this double limit we first set kx = βkz , where β ∈ (−1, 1),
and expand the hyperbolic functions in Taylor series for kz ≪ 1
(e.g. Abramowitz & Stegun, 1984, Eqs.(4.5.65-66) to obtain

CV+ =

 2
45 (β

2
+ 2β + 5)(3 − 2β − β2)k4z + O(k6z )

1/2
1
3 (3 − 2β − β2)k2z + O(k4z )

=


2(β2

+ 2β + 5) + O(k2z )
5(3 − 2β − β2) + O(k2z )

1/2
. (34)

It follows that

CV+ →


2(β2 + 2β + 5)
5(3 − β2 − 2β)

as kz → 0+. (35)

In these distinguished limits, CV+ can approach any value in the
range (

√
2/5, ∞). For β = 0 (kx = 0) the starting point is

unbiased (or a = 0), and we obtain the limit CV+ =
√
2/3,

as for the unconditioned CV; cf. Eq. (15) and see Proposition 5.1.
For β → 1− the starting point lies on the correct threshold and
CV+ diverges as noted above. Aspects of this limiting behavior are
illustrated in Fig. 4.

4.3. Conditioned third moment and skewness of decision time

The third central moment of DT conditioned on correct
decisions is the third derivative of K+(α), evaluated at α = 0.
The skewness of DT is obtained by dividing the third central
moment with the cube of standard deviation. Thus, the third
central moment of DT is

Skew+Var
3
2
+ = Var

3
2
+ × skewness[τ |x(τ ) = z] =

d3

dα3
K+(α)


α=0

=
12σ 2z2

a4
csch2

2az
σ 2


+

16z3

a3
coth

2az
σ 2


csch2

2az
σ 2


+

6σ 4z
a5

coth
2az

σ 2


−

3σ 2(z + x0)2

a4
csch2

a(z + x0)
σ 2


−

2(z + x0)3

a3
coth

a(z + x0)
σ 2


csch2

a(z + x0)
σ 2


−

3σ 4(z + x0)
a5

coth
a(z + x0)

σ 2


=

σ 6

a6

12k2z csch

2(2kz) + 16k3z coth(2kz)csch2(2kz)

+ 6kz coth(2kz) − 3(kz + kx)2csch2(kz + kx)

− 2(kz + kx)3 coth(kz + kx)csch2(kz + kx)

− 3(kz + kx) coth(kz + kx)

. (36)

An expression for Skew+ is obtained by dividing Eq. (36) by the 3/2
power of Eq. (31). In the limit a → 0+ Eq. (36) becomes

Skew+Var
3
2
+ =

1024z6 − 16(z + x0)6

945σ 6
and

Skew+ =


45
2


8(64z6 − (z + x0)6)

21(16z4 − (z + x0)4)
3
2


.

(37)
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Fig. 3. Coefficients of variation as functions of kz for the single threshold DDM
(dashed) and the DDM with double thresholds and kx = 0 (solid).

Similar to CV+, Skew+ diverges as kx → kz . For kx = βkz and
β ∈ (−1, 1),

Skew+ →
4
√
10
7

(β2
+ 3)(β2

+ 4β + 7)
(β2 + 2β + 5)3/2(3 − 2β − β2)1/2

,

as kz → 0+. (38)

In these distinguished limits Skew+ can approach any value in the
range (4

√
10/7, ∞).

In Figs. 1 and 2 key expressions derived above are plotted vs.
threshold z for the DDM (1) with a = 0.2, σ = 0.1, and x0 =

−0.01. These parameter values were chosen as representative of
fits to human data (e.g. Simen et al., 2009), and to illustrate the
general forms of the functions. Drift values in this case might be
expected to range from -0.4 to 0.4 (e.g. Ratcliff, 2014). See also,
among many others, Balci et al. (2011), Balci and Simen (2014),
Bogacz et al. (2010) and Dutilh et al. (2009), for similar ranges of
fitted parameter values. The results of Monte-Carlo simulations of
Eq. (1) using the Euler–Maruyama method (Higham, 2001) with
step size 10−4 are also shown for comparison. Note that, even with
10,000 sample paths, numerical estimates of the thirdmoment and
skewness have not converged very well.

5. Behavior of CVs

We first consider the unconditioned CV with unbiased starting
point x0 = kx = 0, for which we can prove the following result.

Proposition 5.1 (Behavior of CVs of Decision Times for the DDM). The
CV for the double-threshold DDM with kx = 0, Eq. (14), is bounded
above by the CV for the single-threshold DDM, Eq. (4):

1
kz

(1 − e−4kz − 4kze−2kz )

1 − e−2kz

def
= F(kz) <


1
kz

. (39)

Moreover, F(0) =
√
2/3 and F(kz) decays monotonically as kz

increases.

For the proof of the above proposition see Appendix D. Fig. 3
illustrates the proposition by plotting both CV functions over the
range 0 ≤ kz ≤ 10.

It seems difficult to prove a result analogous to Proposition 5.1
for the general CV expressions of Eqs. (10) and (31) due to their
complexity. However, plots of the unconditioned and conditioned
CVs as functions of the normalized threshold and starting point
kz = az/σ 2 and kx = ax0/σ 2 shown in Fig. 4 illustrate their
behavior over the (kz, kx)-plane.
Here, as shown in Proposition 5.1 and Eqs. (34)–(35), for kx = 0
both conditioned and unconditioned CVs converge to

√
2/3 from

below as kz → 0+ (see right column). However, for kx ≠ 0,
the behavior is significantly different. In particular, as shown in
Section 3, Eqs. (25)–(26), the unconditioned CVs diverge as kx →

±kz (see left column). CVs for symmetric starting points ±kx
diverge along different curves as |kx| → kz ; however, these curves
converge to each other as kz → 0+ (see left column). Similarly, CVs
conditioned on correct responses and errors diverge as kx → kz
and kx → −kz respectively. Interestingly, CVs conditioned on
correct responses and errors converge to finite limits smaller than√
2/3 as kx → −kz < 0 and kx → kz > 0 respectively. In Fig. 4(d),

as shown in Section 4, CV+ converges to
√
2/5 as kx → −kz and

kz → 0+. It is interesting to note that this convergence is not
monotone.

The bottom four panels of Fig. 4 illustrate the symmetry of mo-
ments conditioned on correct responses and errors with respect to
kx → −kx, noted at the beginning of Section 4. Unlike the case kx =

0 forwhich CV ismonotonic in kz , as shown in Proposition 5.1, con-
ditioned CVs are notmonotone functions of z or kz in general. Some
instances of non-monotonicity appear in Figs. 1(h), 4(d) and (f).

6. Behavior of moments for the extended DDM

We end by describing some results for the extended DDM
introduced by Ratcliff (1978), specifically, the effects of drawing
drift rates and starting points for Eq. (1) fromGaussian and uniform
distributions N (a, σa) and U(x0 − δ, x0 + δ) respectively, where
x0 ± δ ∈ [−z, z], and standard deviation σa and half-range
δ characterize trial-to-trial variability of drift rates and starting
points. Complete analytical results on moments for this extended
model are not known, andwe therefore performnumerical studies.
In particular we investigate departures from the analytical results
derived above as the variance of the distributions N and the range
of U increase from zero. We also consider the effects of non-
decision time.

6.1. Analytical and semi-analytical expressions

We first discuss how expressions for the moments of decision
times and error rate for the pure DDM can be leveraged
to efficiently compute analogous explicit expressions for the
extended DDM. For clarity, we denote the decision time of the pure
DDMfor a givendrift rate a and starting point x0 by τ(a, x0), and the
error rate by ER(a, x0). The following expressions for the extended
DDM are illustrated in Fig. 5.

The error rate of the extended DDM is the expected value of the
error rate of the pure DDM averaged over the distributions of drift
rates and starting points:

ER = EA

EX0


ER(A, X0)


, (40)

where EY [·] denotes the expected value computed over the
distribution of random variable Y . The expectation over the
random starting point X0 in (40) can be computed explicitly as

EX0 [ER(a, X0)] =
e−2kxsinch(2kδ) − e−2kz

e2kz − e−2kz
, (41)

where kδ = aδ/σ 2 and sinch(·) := sinh(·)/(·). Note that this
expression reduces to Eq. (6) for δ = 0, using sinch(0) = 1.

The non-central moments of the decision times can be
computed similarly. In particular, if Tn(a, x0) is the non-central nth
moment of the decision time for the pure DDM, then the non-
central nth moment for the extended DDM is

T̄n = EA

EX0


Tn(A, X0)


. (42)
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(a) Unconditioned CV vs. kx . (b) Unconditioned CV vs. kz .

(c) CV conditioned on correct decision vs. kx . (d) CV conditioned on correct decision vs. kz .

(e) CV conditioned on error vs. kx . (f) CV conditioned on error vs. kz .

Fig. 4. Coefficients of variation of decision time as functions of kx = ax0/σ 2 for several kz ’s (left column) and kz = az/σ 2 for several kx ’s (right column). Unconditioned CVs
are shown in top row, conditioned CVs in middle and bottom rows. Observe the symmetry kx → −kx relating the latter, as noted at the beginning of Section 4.
The non-centralmoments obtained using Eq. (42) can be usedwith
Eqs. (10) and (21) to compute variance and skewness of decision
time for the extendedDDM. Eq. (42) is valid for both unconditioned
and conditionedmoments. The above expressions for the error rate
and expected decision time for the extended DDM can be found
in Bogacz et al. (2006, Appendix, pp 761–763).

For unconditionedmoments, the expectation overX0 in (42) can
be computed in closed form for first two moments, which may be
written as

EX0 [T1(a, X0)]

=
σ 2

a2

kz coth(2kz) − kze−2kxsinch(2kδ)csch(2kz) − kx


; (43)

EX0 [T2(a, X0)]

=
σ 4

a4


k2z + 4k2z csch

2(2kz) + kz coth(2kz)

− 4k2z e
−2kxsinch(2kδ)csch(2kz) coth(2kz)
− kze−2kxsinch(2kδ)csch(2kz)

− kx + k2x +
k2δ
3

− 2kzkx coth(2kz)

− 2kzkxe−2kx

sinch(2kδ) +

sinch(2kδ) − cosh(2kd)
2kx


× csch(2kz)


. (44)

Expected values in Eq. (42), involving integrals over the Gaussian
distribution that are not tractable in closed form, can easily be
computed numerically, for example, using Simpson’s rule.

Fig. 5 illustrates the behavior of the unconditioned moments of
the extendedDDM, computed as described above. The introduction
of variability in starting points results in increase in error rate,
decrease in expected decision time, increase in CV, and decrease
in skewness to CV ratio. Introduction of variability in drift rate
also causes increase in error rate, decrease in expected decision
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time and increase in CV, but the skewness to CV ratio increases
(compare bottom panels). Interestingly, for high values of drift
rate variability CV is a monotonically increasing function of kz , in
contrast to the behavior of CV for pure DDMdiscussed in Section 5.
The effect of drift rate variability seems to dominate when both
initial condition and drift rate variability are present.

6.2. Effect of non-decision time

Before returning to the extended DDM, we investigate the role
of the non-decision part of the reaction time, the sensory–motor
latency, on its CV and skewness. Recall that RT = DT + Tnd, where
Tnd is the non-decision time. We define the following coefficients
to characterize the dependence of DT and Tnd:

ρ11 =
E[(DT − E[DT])(Tnd − E[Tnd])]

√
Var[DT] Var[Tnd]

, (45)

ρ12 =
E[(DT − E[DT])(Tnd − E[Tnd])2]

Var[DT] E[(Tnd − E[Tnd])4]
, (46)

ρ21 =
E[(DT − E[DT])2(Tnd − E[Tnd])]

E[(DT − E[DT])]4 Var[Tnd]
. (47)

Note that ρ11 is the standard correlation coefficient between
DT and Tnd, and ρ12, ρ21 can be interpreted as higher order
correlation coefficients. If DT and Tnd are independent, then all
these correlation coefficients are zero. In this case, it follows from
the definition of RT that

E[RT] = E[DT] + E[Tnd]

Var[RT] = Var[DT] + Var[Tnd] + 2ρ11


Var[DT] Var[Tnd]

E[(RT − E[RT])3] = Skew[DT]Var[DT]3/2 + Skew[Tnd]Var[Tnd]3/2

+ 3ρ12


Kur[Tnd]Var[DT]Var[Tnd]

+ 3ρ21


Kur[DT]Var[Tnd]Var[DT],

where Kur[·] is the kurtosis.1 The conditioned mean decision time
and variance can be defined similarly by introducing conditioned
equivalents of correlation coefficients (45)–(47). However, for
simplicity of exposition, in the following we assume that non-
decision time and decision time are independent; accordingly, the
above correlation coefficients are zero. Formulae for CV and Skew
for RT’s follow immediately fromabove expressions. For use below,
we assume Tnd is uniformly distributed with mean E[Tnd] and
range st .

6.3. Effects of trial-to-trial variability

Seeking to provide a more complete picture, we conducted
simulations of the extended and pure DD models. To obtain
the following simulation results we used the RTdist package for
graphical processing unit (GPU) based simulation of the DDM
(Verdonck, Meers, & Tuerlinckx, 2015) to simulate a large subset
of the parameter space spanning the range of plausible parameter
values. We simulated 1,518,750 parameter combinations in about
5.5 h on a Tesla NVIDIA GPU, with 1 msec timesteps up to
5 secs maximum RT, with 105 trials simulated per parameter
combination. In Fig. 6, the noise level was fixed at σ = 0.1 and
we varied mean drift a and threshold z over the ranges [0.1, 1.0]
and [0.05, 0.3] respectively. Fig. 6 shows accuracy, mean RT, CV,
skewness to CV ratio (SCV) and the percentage of trials that failed

1 We consider kurtosis as the ratio of the fourth central moment and the square
of the variance. This is in contrast to the convention of subtracting 3 from the above
ratio so that the kurtosis of the standard normal random variable is zero.
to cross thresholdwithin 5 secs. (The latter quantity is small except
for low drift and high threshold, where it rises to 15%–20%.) Note
that the left hand column of Fig. 6 shows results for the pure DDM
with Tnd = 0, and thus provides standards for comparison with
other cases. See Srivastava, Holmes, and Simen (2016, Appendix E)
for additional simulation results.

The most profound effect on higher moments of the RT
distributions is due to changes in non-decision latency, Tnd, as
shown in Fig. 6. Specifically, note the dramatic drop in the CV of RTs
as Tnd increases from 0 to 0.28 s, and the corresponding increase of
skewness to CV ratio (red arrows, row 3).

Fig. 7 shows this phenomenon most clearly, using behaviorally
plausible values for the extended DDM.When the correct expected
non-decision latency of 0.45 s is subtracted from the RTs, the CV
(middle plot) approaches

√
2/3 ≈ 0.8165 as drift approaches

0. Thus researchers may be able to estimate Tnd at low accuracy
levels when behavior is unbiased toward either alternative by
progressively subtracting from the RT until the CV approaches√
2/3 from below (cf. Proposition 5.1 and Fig. 3). In contrast, the

SCV ratio grows substantially as drift, and hence accuracy, increase
(Fig. 6, red arrows, rows 3 and 4). Researchers may therefore be
able to estimate Tnd at high drift levels by subtracting postulated
non-decision time from the RT until the SCV ratio declines to 3.
These two heuristics for estimating Tnd independently at both low
and high levels of drift may provide robust and easily-computable
sanity checks for constraining the values of Tnd when using fitting
algorithms.

7. Conclusion

We analyzed in detail the first three moments of decision times
of the pure and extended DDMs. We derived explicit expressions
for unconditioned and conditioned moments and used these
expressions to thoroughly investigate the behavior of the CV and
skewness of decision times in terms of two useful parameters: the
non-dimensional threshold and non-dimensional initial condition
(kz and kx, Eq. (2)). These expressions are summarized in
Table 1, and their MatLab and R implementation is available at:
https://github.com/PrincetonUniversity/higher_moments_ddm.

In particular, we computed several limits of interest for the pure
DDM.We established that, for an unbiased starting point (x0 = 0),
the CV of decision times is a monotonically decreasing function
of kz and that it approaches

√
2/3 as kz → 0 (Proposition 5.1

and Fig. 3). In the limits of small drift rate and unbiased starting
point, we showed that the ratio of skewness to CV approaches
12/5. Furthermore, for non-zero drift rates and in the limit of large
thresholds (high accuracy), we showed that skewness to CV ratio
approaches 3. We showed that both CV and skewness of decision
times diverge as the starting point approaches either threshold;
however, the ratio of skewness to CV is a bounded function of
non-dimensional threshold. We also showed that in the limit of
large thresholds, thesemomentsmatch those of first passage times
for single-threshold drift-diffusion processes, and we established
similar results for conditioned CV and skewness of decision times.
We established that the decision time distribution for the double-
threshold DDM converges to the decision time distribution of the
single-threshold DDM for large thresholds (Appendix C).

We then derived analytic and semi-analytic expressions for the
moments of decision times of the extended DDM, and numerically
investigated the effects of trial-to-trial variability in starting points
and drift rates on the DDM’s performance. We observed that
variability in drift rate appears to dominate these effects, compared
to starting point variability.

Finally, we investigated the effect of non-decision times
(sensory–motor latencies, Tnd) on decision-making performance.
We observed that CVs of reaction times (DT + Tnd) decrease and

https://github.com/PrincetonUniversity/higher_moments_ddm
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Fig. 5. Behavior ofmoments for the extendedDDM. In all panels a = 0.2 andσ = 0.1. Three sub-panels in each panel correspond to x0 = −z/2, 0 and z/2, respectively, from
top to bottom. Left panels correspond to σa = 0 and green solid with dots, red dashed, and black solid curves to δ = 0, 0.45min{z − x0, x0 + z} and 0.9min{z − x0, x0 + z},
respectively. Middle panels correspond to δ = 0 and green solid with dots, red dashed, and black solid curves to σa = 0, 0.1 and 0.2, respectively. Right panels are analogous
to middle panels and correspond to δ = 0.45min{z − x0, x0 + z}.
their skewness-to-CV ratios increase asmean Tnd’s increase (Fig. 6).
We propose that the decrease in CVs and increase in skewness-to-
CV ratios could be used to estimate non-decision times in low and
high accuracy regimes respectively (see Fig. 7). The development
of rigorous methods using these metrics to estimate non-decision
time is a potential avenue for future research.

It should be noted that difficulties in estimating higher mo-
ments of empirical RT data have been highlighted in the litera-
ture (Luce, 1986; Ratcliff, 1993). However, at least in the context
of interval-timing tasks, predictions regarding CV and skewness
have proved to be useful in discriminating between different mod-
els (Simen et al., 2011, 2016). Furthermore, it is possible that future
two-alternative perceptual decision task designs could be found
that would yield data amenable to estimation of higher moments,
in which case, the expressions we derive here may prove helpful.
More generally, the explicit expressions derived in this paper
can be used to quickly identify ranges of parameters that are
relevant to fitting specific behavioral data sets, thereby reducing
the volumes of multi-dimensional space in which parameter fits
need to be run. In principle, the cumulant generating function
method outlined in Appendix C can be used to produce formulae
for fourth and higher moments, and although the results will
be complex, they and their limiting behaviors may also provide
guidance for parameter fitting.
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Appendix A. Error rate and unconditioned variance of decision
time

In this sectionwe show that error rate (6) and expected decision
time (7) are equivalent to the expressions given in the subsection
‘‘The Drift Diffusion Model’’ of Bogacz et al. (2006, Appendix,
Eqs. (A27-31)). In our notation, the quantities z̃ and ã defined
in Bogacz et al. (2006) are

z̃ =
z
a
, and ã =

a2

σ 2
.

Define x̃0 = x0/a. Note that kz = z̃ã and kx = ãx̃0. Also note that
x̃0 and x0 are referred to as x0 and y0, respectively in Bogacz et al.
(2006).

The expression (6) for error rate may be rewritten as follows

ER =
e−2kx − e−2kz

e2kz − e−2kz
=

1 − e−2kz

e2kz − e−2kz
−

1 − e−2kx

e2kz − e−2kz

=
e2kz − 1
e4kz − 1

−
1 − e−2kx

e2kz − e−2kz

=
e2kz − 1

(e2kz + 1)(e2kz − 1)
−

1 − e−2kx

e2kz − e−2kz

=
1

1 + e2kz
−

1 − e−2kx

e2kz − e−2kz

=
1

1 + e2z̃ã
−


1 − e−2x̃0 ã

e2z̃ã − e−2z̃ã


, (48)
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which is identical to the ER expression in Bogacz et al. (2006).
Similarly,

E[DT] =
σ 2

a2

kz coth(2kz) − kze−2kxcsch(2kz) − kx


=

σ 2

a2
kz


coth(2kz) − csch(2kz) + (1 − e−2kx)csch(2kz) −

kx
kz


=

z
a


e2kz + e−2kz − 2
e2kz − e−2kz

+ (1 − e−2kx)csch(2kz) −
x0
z


=

z
a
tanh(kz) +

2z
a

(1 − e−2kx)

e2kz − e−2kz
−

x0
a

= z̃ tanh(z̃ã) +
2z̃(1 − e−2ãx̃0)

e2ãz̃ − e−2z̃ã
− x̃0, (49)

which is identical to the expected decision time expression
in Bogacz et al. (2006).

Appendix B. Unconditioned variance of decision time

The secondmoment of the decision time T2 is the solution of the
following linear ODE:

a
dT2
dx0

+
σ 2

2
d2T2
dx20

= −2E[DT], (50)

with boundary conditions T2(±z) = 0 (e.g. Gardiner, 2009, Section
5.5.1; see Eq. (5.5.19) for the general n’th moment ODE). To solve
Eq. (50) we first rewrite E[DT] to make dependence on the starting
point x0 explicit:

E[DT] = α1 − α2e−2kx0 −
x0
a

.

Here α1 =
z
a coth(2kz), α2 =

z
a csch(2kz) and unlike kz, kx defined

above, k =
a

σ 2 is independent of z and x0. A particular solution
to (50) is

T p
2 =

x20
a2

− α3x0 −
2α2

a
x0e−2kx0 ,

where α3 =
2
a (α1 +

1
2ka ), and the general solution takes the form

T2(x0) = c1 + c2e−2kx0 +
x20
a2

− α3x0 −
2α2

a
x0e−2kx0 .

Substituting the boundary conditions T2(±z) = 0, and solving for
c1 and c2, we obtain

c1 =
2z2

a2
coth2(2kz) +

z
ka2

coth(2kz) −
z2

a2
+

2z2

a2
csch2(2kz)

=
z2

a2
+

4z2

a2
csch2(2kz) +

z
ka2

coth(2kz), and

c2 = −
4z2

a2
csch(2kz) coth(2kz) −

z
ka2

csch(2kz),

and we therefore find that

T2 =
z2

a2
+

4z2

a2
csch2(2kz) +

σ 2z
a3

coth(2kz)

−
4z2e−2kx0

a2
csch(2kz) coth(2kz) −

σ 2ze−2kx0

a3
csch(2kz)

+
x20
a2

−
2zx0
a2

coth(2kz) −
σ 2x0
a3

−
2zx0e−2kx0

a2
csch(2kz).

(51)
We can now obtain the expression for the variance of decision
time:

Var = T2 − E[DT]2

=
3z2

a2
csch2(2kz) +

σ 2z
a3

coth(2kz)

−
σ 2x0
a3

−
2z2e−2kx0

a2
csch(2kz) coth(2kz)

−
σ 2ze−2kx0

a3
csch(2kz) −

4zx0e−2kx0

a2
csch(2kz)

−
z2e−4kx0

a2
csch2(2kz). (52)

Equivalently, we may write

Var =
σ 4

a4

3k2z csch

2(2kz)

− 2k2z e
−2kxcsch(2kz) coth(2kz) − 4kzkxe−2kxcsch(2kz)

− k2z e
−4kxcsch2(2kz) + kz coth(2kz)

− kze−2kxcsch(2kz) − kx

. (53)

Appendix C. Method for computation of conditionedmoments

The moment generating function MX : H → R>0 of a random
variable X is defined by

MX (α) := E[eαX
],

provided the expectation exists for each α in some neighborhood
of zero, i.e., for each α ∈ H , where H ⊂ R is some interval
containing zero. The moment generating function is a special case
of the characteristic function defined on the complex plane (see
Grimmett and Stirzaker (2001, Section 5.7, Theorem 12)), and from
it the cumulant generating function KX : H → R of X can be
obtained by taking the natural logarithm:

KX (α) = logMX (α). (54)

The nth cumulant κn of X is defined as κn =
dnKX (α)

dαn


α=0, or

equivalently KX (α) =


∞

n=1
κnα

n

n! . It can then be shown that

κ1 = µ1, κ2 = µcen
2 , κ3 = µcen

3 , and κ4 = µcen
4 − 3κ2

2 ,

where µn = E[Xn
] and µcen

n = E[(X − E[X])n] denote the nth
non-central and central moments. Thus, successive moments of
the distribution from which X is drawn can be generated from
MX (α). For further details and derivations of moment generating
functions, see Gut (2007, Chap 4, Section 6) and Gardiner (2009,
Section 2.6).

We now derive the moment generating function for DTs of the
DDM (1). We define MDT : A → R>0,M+ : A → R>0, and
M− : A → R>0 by

MDT(α) = E[eατ
], M+(α) = E[eατ

|x(τ ) = z], and
M−(α) = E[eατ

|x(τ ) = −z],
(55)

where A ⊂ R is some interval containing zero in which the above
expectations exist. MDT(α),M+(α) and M−(α) are, respectively,
themoment generating functions for unconditioneddecision times
(for all responses) and for decision times conditioned on correct
responses and on errors. Expressions for these functions are well
known in the literature (e.g. Borodin & Salminen, 2002). Here, for
completeness, we derive them from first principles.

We begin by deriving an expression for M+(α). We note that
for a given set of parameters a, σ , z, and α, M+(α) depends only
on x0. Let τ(x0) denote the decision time (DT) starting from initial
condition x0. Define g : R → R>0 as themap from initial condition
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x0 toM+(α)P(x(τ ) = z), i.e.,

g(x0) = E[eατ(x0)1(x(τ (x0)) = z)], (56)

where 1(·) is the indicator function.
Consider the evolution of the DDM (1) starting from x0 at t = 0

for an infinitesimal duration h ∈ R>0. Let Xh := x(h) = x0 + ah +

σW (h). It follows that

g(x0) = EXhEτ(Xh)[e
α(h+τ(Xh))]

= eαhEXh [g(Xh)]

= eαh

g(x0) +

dg
dx0

ah +
1
2
d2g
dx20

σ 2h


+ O(h2),

where O(h2) represents terms of order h2 and higher. Rearranging
terms and setting h → 0+, we obtain the following ODE for g

σ 2

2
d2g
dx20

+ a
dg
dx0

+ αg = 0, (57)

with boundary conditions g(z) = 1 and g(−z) = 0. The solution
to (57) is of the form g(x0) = ζ1eλ1x0 + ζ2eλ2x0 , where λ1 and λ2
are roots of the equation σ 2λ2/2 + aλ + α = 0, i.e.,

λ1 =
−a −

√
a2 − 2ασ 2

σ 2
, and λ2 =

−a +
√
a2 − 2ασ 2

σ 2
.

Substituting the boundary conditions, we get two simultaneous
equations

ζ1eλ1z + ζ2eλ2z = 1, and ζ1e−λ1z + ζ2e−λ2z = 0,

the solution to which is

ζ1 =
eλ1z

e2λ1z − e2λ2z
, and ζ2 = −

eλ2z

e2λ1z − e2λ2z
,

and consequently,

g(x0) =
eλ1(z+x0) − eλ2(z+x0)

e2λ1z − e2λ2z

=
e−a(z+x0)/σ 2

e−2az/σ 2

sinh


(z+x0)
√

a2−2ασ 2

σ 2


sinh


2z
√

a2−2ασ 2

σ 2



= e
a(z−x0)

σ2

sinh


(z+x0)
√

a2−2ασ 2

σ 2


sinh


2z
√

a2−2ασ 2

σ 2

 .

Thus, recalling the definition (56) of g(x0), the moment-
generating function conditioned on correct decisions is

M+(α) = E[eατ
|x(τ ) = z]

=
e

a(z−x0)

σ2

P(x(τ ) = z)

sinh


(z+x0)
√

a2−2ασ 2

σ 2


sinh


2z
√

a2−2ασ 2

σ 2

 , (58)

and substituting this in the definition (54) yields the cumulant
generating function (28) used in Section 4.

Similarly, we may obtain analogous expressions for incorrect
decisions

M−(α) = E[eατ
|x(τ ) = −z]

=
e

−a(z+x0)

σ2

P(x(τ ) = −z)

sinh


(z−x0)
√

a2−2ασ 2

σ 2


sinh


2z
√

a2−2ασ 2

σ 2

 , (59)
and for all decisions, correct and incorrect:

MDT(α) = E[eατ
]

= e
−a(z+x0)

σ2

sinh


(z−x0)
√

a2−2ασ 2

σ 2


sinh


2z
√

a2−2ασ 2

σ 2



+ e
a(z−x0)

σ2

sinh


(z+x0)
√

a2−2ασ 2

σ 2


sinh


2z
√

a2−2ασ 2

σ 2

 . (60)

It should be noted that in the limit z → ∞

MDT(α) = exp


az
σ 2


1 −


1 −

2ασ 2

a2


,

which is the moment generating function of the Wald distribu-
tion (Borodin & Salminen, 2002, Eq. 2.0.1), i.e., the decision time
distribution of the single-threshold DDM. Consequently, the de-
cision time distribution of the double-threshold DDM converges
to the decision time distribution of the single-threshold DDM as
z → ∞.

Appendix D. Proof of Proposition 5.1

We first show that the CV for the single-threshold DDM
provides an upper bound for the double threshold case. Canceling
the

√
1/kz terms in the inequality (39), squaring, rearranging and

dividing by 2e−2kz shows that this is equivalent to

(1 − e−2kz )2 > (1 − e−4kz − 4kze−2kz ) ⇔ e−2kz > 1 − 2kz, (61)

which clearly holds for all kz ≠ 0.
We next evaluate the limit of F(kz) as kz → 0 by expanding the

numerator of Eq. (39) in Taylor series:
1
kz


1 −


1 − 4kz +

16k2z
2

−
64k3z
3!


−


4kz(1 − 2kz +

4k2z
2

)


+ O(k4z )



=


8
3
k2z + O(k3z ).

Expanding the denominator likewise, we have

F(kz) =


8
3k

2
z + O(k3z )

[1 − (1 − 2kz + O(k2z ))]
→


2
3

as kz → 0. (62)

The exponentials in the numerator and denominator of F(kz)
decay rapidly, so that it differs from

√
1/kz by less than 0.24% for

kz ≥ 4, implying that the slow monotonic decay ∼ k
1
2
z dominates

for large kz ; see Fig. 3. However, the behavior for smaller kz is more
subtle and requires computation of all terms in the Taylor series.

To prove monotonic decay throughout we use the fact that
F(kz) > 0 and show that the derivative of

F 2(kz) =


1−e−4kz

2kz
− 2e−2kz


(1 − e−2kz )2

(63)

is strictly negative for all kz > 0. Henceforth, for convenience, we
set y = 2kz and compute
d
dy

[F2(y)]

=

(1 − e−y)

−

1
y2

+
e−2y

y2
+

2e−2y
y + 2e−y


− 2e−y


1−e−2y

y − 2e−y


(1 − e−y)3

=

−(1−e−y)(1−e−2y)

y2
−

2e−y(1−e−y)

y + 2e−y(1 + e−y)

(1 − e−y)3
. (64)
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Since (1 − e−y)3 > 0 it suffices to show that the numerator of
Eq. (64) is negative, or, multiplying by y2e3y and rearranging, that

1 + e3y + 2ye2y def
= L > ey + e2y + 2yey + 2y2ey + 2y2e2y

def
= R. (65)

We expand both L and R in Taylor series, obtaining

L = 1 +


1 + 3y +

(3y)2

2!
+

(3y)3

3!
+ · · · +

(3y)j

j!
+ · · ·


+ 2y


1 + 2y +

(2y)2

2!
+ · · · +

(2y)j−1

(j − 1)!
+ · · ·


= 2 + 3y +

9y2

2
+

27y3

6
+ · · · + 2y + (2y)2

+
(2y)3

2!
+ · · · +

(3y)j

j!
+

(2y)j

(j − 1)!
+ · · ·

= 2 + 5y +
17
2

y2 +
17
2

y3 +
145
24

y4 +
403
120

y5 + · · ·

+


3j

+ j2j

j!


yj + · · · ; and (66)

R = 1 + y +
y2

2!
+

y3

3!
+ · · · +

yj

j!
+ · · · + 1 + 2y

+
(2y)2

2!
+

(2y)3

3!
+ · · · +

2jyj

j!
+ · · ·

+ 2y + 2y2 +
2y3

2!
+

2y4

3!
+ · · · +

2yj

(j − 1)!
+ · · ·

+ 2y2 + 2y3 +
2y4

2!
+ · · · +

2yj

(j − 2)!
+ · · ·

+ 2y2 + 22y3 +
23y4

2!
+ · · · +

2j−1yj

(j − 2)!
+ · · ·

= 2 + 5y +
17
2

y2 +
17
2

y3 +
145
24

y4 +
403
120

y5 + · · ·

+
1 + 2j

+ 2j2 + 2j−1j(j − 1)
j!

+ · · · . (67)

Note that the first 6 terms of L and R, up to O(y5), are identical,
and the 4 succeeding coefficients of L − R up to O(y9) are strictly
positive (specifically, 1/45, 1/30, 11/420 and 1/70). To show that
all succeeding coefficients are likewise positive, wemake pairwise
comparisons of the six terms in the numerator of the general
coefficient of L − R:

3j
+ j2j

− [1 + 2j
+ 2j2 + 2j−1j(j − 1)]

= [j2j
− 2j2] + [j2j−1

− (1 + 2j)] + [3j
− j22j−1

]. (68)

It can be checked that

j2j > 2j2 ⇔ 2j > 2j for j ≥ 3, (69)

j2j−1 > 1 + 2j
⇔ j > 2 +

1
2j−1

for j ≥ 3, (70)

3j > j22j−1
⇔


3
2

j

>
j2

2
for j ≥ 10; (71)

thus, all coefficients of terms greater than O(y5) are strictly
positive, completing the proof. �
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