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Introduction and Background: 
Cognitive control has been defined as 

the “ability (of the human cognitive system) 
to configure itself for the performance of 
specific tasks through appropriate 
adjustments in perceptual selection, response 
biasing, and the on-line maintenance of 
contextual information” (Botvinick et. al, 
‘04). The application of cognitive control is 
understood to be subject to limitation, which 
manifests in the form of boredom and fatigue, 
but for which the mechanism is not well-
understood.  

The Expected Value of Control 
theory suggests that the brain “specifies how 
much control to exert according to a rational 
cost-benefit analysis” (Lieder et al. ’18), 
estimating an optimal amount of control 
according to, “the expected payoff from a 
(task), the amount of control that must be 
invested (…), and the cost in terms of 
cognitive effort.” (Shenhav, Botvinick, 
Cohen, ’13). In a similar approach Kurzban 
et al., “argue that the phenomenology of 
effort can be understood as the felt output of 
these cost/benefit computations”, and that the 
build-up of these costs over time “motivates 
reduced (control) in the service of the present 
task”, leading to “performance reductions”. 
However, in the absence of explicit, 
deliberate cost-benefit calculations, the 
nature of these cost-benefit assessments is 
unclear. 

One source of insight is the study of 
task-switching and the exploration of the 
cognitive stability-flexibility dilemma. A 
person doing nearly anything is a person 

performing a task, and a person switches 
tasks every time they shift their attention. A 
person, for example, reading a book on the 
bus must switch tasks to monitor the 
environment to assess the proximity of their 
stop. The problem of how and when we 
choose to switch tasks can be framed as an 
explore-exploit tradeoff and, thereby, as an 
optimization problem that humans solve 
frequently and, often, without explicit 
calculation. Work by Kreuger, Wilson, and 
Cohen indicates that “explore-exploit 
decisions are driven by three independent 
processes: directed and random exploration, 
and a baseline uncertainty seeking that is 
driven by a prior”. They explain that directed 
exploration is an information seeking 
behavior while random exploration is driven 
by “decision noise”. In deciding whether to 
explore, agents must also consider a loss in 
the form of “switch cost”, measured by 
slowed reaction time and, consummately 
reduced reward, and attributed to the physical 
process of changing tasks (Kreuger, Wilson, 
Cohen ‘17).  

Recent work by Musslick et 
al.suggests that limiting control is a means of 
optimizing in the cognitive stability-
flexibility dilemma, which describes the need 
to focus enough to succeed in one task, but 
not so much as to incur excessively high 
switch costs to other rewarding tasks, as in 
the case of hyper-focusing in ADHD patients. 

Busemeyer has provided strong 
arguments for applying quantum probability 
in assessing cognitive states, citing order 



effects, interference, and observer-
dependency in measurement. 
 I will present a model building on 
EVC, the motivational model, and quantum 
cognition work to create a model of task-
switching and fatigue. This model offers 
hope of a unifying description of multiple 
well-known but previously disparate 
phenomena.  

I describe the task landscape as a 
dynamic, n-dimensional set of quadratic 
potentials, where initial depth is determined 
by reward and wells update in discrete time 
as agents gather information about the tasks. 
As the task landscape is internal to the agent, 
it depends on the agent’s perception of the 
tasks. The potentials (also labeled as 
“attractor states”) become more or less 
attractive as the agent gains information 
about their potential for reward. 

In the context of experiment, wherein 
an agent is in a closed, controlled 
environment with a fixed number of tasks 
with known, static rewards dispensed upon 
successful completion of a task, we expect 
that the agent’s assessment of task 
attractiveness will be a function only of the 
reward and the agent’s assessment of their 
likelihood of succeeding at the task. As the 
agent succeeds or fails at the task, they collect 
evidence to either support or contradict their 
expectations of reward and will update the 
landscape accordingly. 

We expect the depth of the wells, 
then, to update as a result of the agent’s 
success or failure. I will explore multiple 
plausible update algorithms, to be fitted to 
experimental data.  

An agent’s state is described 
analogously to a quantum particle within the 
task landscape: the agent has “kinetic 
energy”, a sum of a control constant and 
gaussian random noise, and is acted upon by 
the task potentials. The control term is 
determined by the agent and represents the 
amount of focus the agent chooses to apply to 

the tasks. The noise arises from several 
sources: noise internal to the agent 
(commonly seen in cognitive psychology), 
and an uncertainty bias arising from all tasks 
not explicitly assigned a reward term. The 
agent’s kinetic energy determines whether 
they are found in a bound or scattering state. 
In a bound state, the agent has a higher 
probability of being found in the task wells 
than elsewhere. In a scattering state, the agent 
has equal probability of being found 
anywhere in the task landscape.  

In a physical QM system, a particle is 
said to be found within a potential well when 
it is measured to be in the space occupied by 
that potential. In this model, an agent is said 
to be found in the well of the task they 
perform. We are required to make a 
distinction between the task the agent 
chooses to attempt, and the task that the agent 
performs. 

In the case of two tasks, an agent will 
choose to attempt one task but, in addition to 
successfully completing that task, they may 
also fail by either succeeding at the other task 
(as commonly occurs in tasks that exhibit 
interference) or by failing both tasks.  

In order for the wells to update 
appropriately, it is important to be able to 
classify both forms of failure, as an agent will 
not experience “accidental success” in the 
same way as “deliberate success”.  

In the single task landscape, failure 
only results in cognitive fatigue as the single 
potential diminishes. In a two-task landscape, 
an agent also experiences fatigue through 
diminishing task potentials as a result of 
failure. However, the agent may switch to 
another rewarding task. There is always a 
non-zero probability of a spontaneous switch.  

I will also discuss experimental 
verification of and future directions for this 
model. 
  



 


