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Abstract
In previous work, we built a neuromechanical model for insect locomotion in the horizontal plane, containing a central pattern
generator, motoneurons, muscles actuating jointed legs, and rudimentary proprioceptive feedback. This was subsequently
simplified to a set of 24 phase oscillators describing motoneuronal activation of agonist–antagonist muscle pairs, which
facilitates analyses and enables simulations over multi-dimensional parameter spaces. Here we use the phase-reduced model
to study dynamics and stability over the typical speed range of the cockroach Blaberus discoidalis, the effects of feedback on
response to perturbations, strategies for turning, and a trade-off between stability andmaneuverability.We also comparemodel
behavior with experiments on lateral perturbations, changes in body mass and moment of inertia, and climbing dynamics,
and we present a simple control strategy for steering using exteroceptive feedback.

Keywords Exteroception · Feedback control ·Hybrid systems ·Neuromechanics · Proprioception · Stability–maneuverability
trade-off

1 Introduction

Animals are adept at traversing complicated terrain. Insects,
in particular, use their hexapedal gaits to run nimbly, maneu-
ver, forage, and escape. Their abilities have inspired exper-
imental studies, the development of mathematical models
(Holmes et al. 2006), and the creation of legged robots
(Altendorfer et al. 2001; Delcomyn 2004). Experiments on
cockroaches andmodels of themhave been especially reveal-
ing (e.g., Full and Tu 1991; Ting et al. 1994; Kubow and Full
1999; Full and Koditschek 1999; Full et al. 2002; Schmitt
et al. 2002), demonstrating that feedforward activation of the
body-limbmechanics suffices for stable running andprovides
rapid recovery from large impulsive perturbations (Jindrich
and Full 2002;Kukillaya andHolmes 2007, 2009). However,
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it is known that reflexive feedback can modify motoneu-
ron spike (action potential) timing and numbers in a burst,
while running fast over rough terrain (Sponberg and Full
2008). This implies a subtle combination of feedforward and
feedback strategies, motivating further experiments and the-
oretical studies.

The present paper builds on work including that cited
above, and a series of studies of the central pattern generator
(CPG) and proprioceptive feedback in cockroaches (Pearson
and Iles 1970, 1971; Pearson 1972; Pearson and Iles 1973;
Delcomyn 1980; Zill and Moran 1981a; Zill et al. 1981; Zill
and Moran 1981b), more recently supplemented by Fuchs
et al. (2011, 2012) and David et al. (2016). These have led to
a range of increasingly complex and realisticmodels of cock-
roach dynamics in the ground plane (Schmitt and Holmes
2000, 2003; Seipel et al. 2004; Ghigliazza and Holmes
2004a; Kukillaya and Holmes 2007, 2009), culminating in
a neuromechanical system comprising CPG, nonlinear mus-
cles actuating jointed legs, and proprioception from leg force
sensors (Kukillaya et al. 2009). But with almost 300 ordinary
differential equations (ODEs), this model is slow to simu-
late, impossible to analyze, and provides little insight on how
its components interact. Phase reduction and averaging the-
ory subsequently allowed us to replace 288 ODEs describing
bursting interneurons, synaptic connections to motoneurons
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Fig. 1 a Ventral view of the cockroach Blaberus discoidalis, showing
leg components; adapted from Kram et al. (1997, Fig. 1). bDorsal view
of the hexapedal model with pairs of Hill-type muscles actuating each
joint; solid and dotted lines denote stance and swing legs; inertial frame

(x, y) and body frame (xb, yb) coordinates are also shown. c State space
variables of the Poincaré map (5). Adapted from Kukillaya and Holmes
(2009) and Kukillaya et al. (2009)

(MNs), muscle activation dynamics, and force-sensing neu-
rons,with 24 phase oscillatorsmodelingMNs in Proctor et al.
(2010). [This was later reduced to a 6-oscillator model which
was fitted to free running data from cockroaches (Couzin-
Fuchs et al. 2015).]

In the present paper, we use the 24-oscillator model to fur-
ther investigate the role of reflexive feedback, and its effects
on turning and maneuverability. We maintain close ties to
biological observations, using data fromBlaberus discoidalis
as in previous work. In Sect. 2, we review the model and
describe its key features. New work begins in Sect. 3 where
we verify that the model runs stably over the speed range
of B. discoidalis without feedback. In Sect. 4, we study the
effect of proprioceptive feedback on the model’s response to
impulses and describe its turning performancewith andwith-
out proprioception. Section 5 compares model behavior with
recent experiments on lateral perturbations and the effects
of added mass and moment of inertia, discusses climbing
behavior, and presents a linearized control strategy for steer-
ing, using exteroceptive feedback. A discussion ensues in
Sect. 6.

2 The neuromechanical model

The phase-reduced model of Proctor et al. (2010) is a
direct descendent of passive bipedal (Schmitt and Holmes
2000) and actuated hexapedal mechanical models (Seipel
et al. 2004; Kukillaya and Holmes 2007), the muscle-
actuated hexapod of Kukillaya and Holmes (2009), and

the CPG-motoneuron model of Ghigliazza and Holmes
(2004a), as integrated in Kukillaya et al. (2009). Here we
briefly review the model, first describing its biomechan-
ical components, then the CPG and its phase reduction,
and finally the incorporation of proprioceptive feedback
into the phase-reduced model. Further details, including
parameter values and MATLAB codes, can be found in
Electronic Physics Auxiliary Publication Service (2009)
and Proctor et al. (2010) and its supplementary materials.
The MATLAB codes used in the present work are available
at GitHub: https://github.com/joshlproctor/Phase-Reduced-
Insect-Locomotion.

2.1 Biomechanics: limb geometry, muscles, and
neural activation

Cockroaches employ a double-tripod gait over a wide speed
range (Full and Tu 1991). The left front and hind legs and
the right middle leg support the body during the “left” stance
phase, while the other legs leave the ground in a swing
phase. Right stances and left swings are defined analogously.
As in earlier work, we assume a 50% duty cycle: each tri-
pod’s touchdown (TD) coincides with liftoff (LO) of the
contralateral (swing) tripod. Figures 1a, b illustrate the ani-
mal’s body-limb geometry and its simplification to a rigid
body retaining only two joints in each leg. Leg masses are
neglected and dynamics considered in the horizontal plane,
ignoring vertical motions, pitch, and roll. The body has three
mechanical degrees of freedom (planar translations andyaw).
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Written in inertial coordinates r = x î + y ĵ, the equations of
motion are:

mẍ =
∑

i

Fix (r f i − r, θ, t), (1)

mÿ =
∑

i

Fiy(r f i − r, θ, t), (2)

I θ̈ =
∑

i

(r f i − r) × Fi (r f i − r, θ, t), (3)

where m and I are the body mass and yaw moment of iner-
tia, Fi = Fix î+ Fiy ĵ denotes the reaction force at foot i , the
vectors r f i identify the TD foot positions (fixed in inertial
space throughout each stance phase), and the sums run over
i = 1, 2, 3 for L tripod and i = 4, 5, 6 for R tripod. The
forces Fi include passive, linear, joint stiffnesses, and damp-
ing, and are obtained from joint torques via the nonlinear leg
kinematics.

The contributions of muscle forces to joint torques are
determined by a Hill-type model (Hill 1938), described in §2
and Figs 1 and 2 of Kukillaya and Holmes (2009):

Fmuscle(t) = F0 a(t)FL(lm)FV(vm), (4)

where a(t) is an activation functionmodeling calcium release
following the arrival of spikes frommotoneurons, taken from
Kukillaya and Holmes (2009, §2.1). The functions FL and
FV describing force dependence onmuscle length and veloc-
ity are fitted to experiments (Ahn and Full 2002; Ahn et al.
2006). Tomatch observed foot forces fromTing et al. (1994),
the scale factor F0 is adjusted, along with stereotypical spike
inputs, for each muscle pair, using the inverse fitting proce-
dure ofKukillaya andHolmes (2009, §§3-4). Eqs. (1–4) form
a feedforward, nonlinear, time-dependent, hybrid dynamical
system, since the L and R tripods alternate in stance, cf.
Guckenheimer and Johnson (1995).

As noted in Schmitt and Holmes (2000), the dynamics is
invariant under planar translations, implying that the system
state at TD of each tripod may be specified by four vari-
ables: center of mass (CoM) velocity magnitude v, velocity
direction δ relative to the major body axis, body axis angle
θ , and angular velocity ω = θ̇ : Fig. 1c. The dynamics are
described by a 4-dimensional Left-TD to Left-TD Poincaré
map (Guckenheimer and Holmes 2002; Holmes et al. 2006):

(v, δ, θ, ω) �→ P (v, δ, θ, ω). (5)

Appropriately parameterized, the linearized model pos-
sesses a branch of gaits with one unit eigenvalue correspond-
ing to body orientation. The other three eigenvalues generally
lie within the unit circle, indicating partial asymptotic sta-
bility (Holmes et al. 2006), and supporting the proposal of
Brown et al. (1995) that mechanical “preflexes” are primarily
responsible for stability in rapid running.

2.2 The CPG, motoneurons and proprioceptive
feedback

We now describe how the biomechanical model is driven.
The cockroach CPG is located within the thorax, in three
pairs of hemisegments, each innervating the muscles driv-
ing a corresponding leg. Little is known regarding cell types
or neural architecture, but earlier work (Pearson and Iles
1970, 1971; Pearson 1972; Pearson and Iles 1973) estab-
lished the presence of bursting interneurons that inhibit
depressor motoneurons and excite levitator motoneurons
in each hemisegment, and found evidence of inhibitory
ipsilateral intersegmental connections. This work motivated
ion-channel models of bursting neurons (Ghigliazza and
Holmes 2004b) and the CPG network of Fig. 2a that was
developed in Ghigliazza and Holmes (2004a, §§2-4). More
recent studies (Fuchs et al. 2011, 2012) have reinforced
this picture and provided estimates of ipsi- and contralat-
eral coupling strengths, showing that the former are stronger
in the descending (rostro-caudal) direction than ascending
[unlike the rostro-caudally symmetric network of Ghigliazza
and Holmes (2004a)]. Internal coupling is nonetheless weak
(Fuchs et al. 2011), although the variability of the tripod-like
phase relations among hemisegments is reduced by proprio-
ceptive feedback from stepping legs (Fuchs et al. 2012).

Each of the six CPG units of Fig. 2a represents a pool of
interneurons, and given identical parameters and hence burst-
ing frequencies, they collectively produce a double-tripod
rhythm. Units 1, 2 and 3 burst in phase, and 4, 5 and 6 like-
wise, in antiphase with 1, 2 and 3. The network therefore
acts as a clock to set the stepping frequency by emitting two
equi-spaced bursts of spikes per cycle to MNs associated
with the left and right tripods. To actuate hip and knee joints
in the model of Fig. 1b, each CPG unit drives two extensor
and flexor pairs of fast MNs, which, respectively, excite and
inhibit flexors and extensors in the simplified musculature of
our horizontal plane model.

2.3 Phase reduction

For the models described above, weak coupling, phase
response curves and averaging theory allow the 3-variable
ODEdescribing each bursting unit, and the scalarODE for its
synaptic dynamics, to be reduced to a rotator or phase oscil-
lator, characterized by a single angular variable φi (Holmes
et al. 2006; Ghigliazza and Holmes 2004a). Letting i denote
a CPG unit and j one of its associated MNs, the phase angle
of the latter evolves as follows:

φ̇ j = ω0 + ε
[
δ j + Z j (φ j )gi j (φ j , φi , t)

]
, (6)

where the CPG φi has frequency ω0 and the MN ω0 + εδ j .
The phase response curve (PRC) Z(φ j ) describes the MN’s
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(a) (b)

Fig. 2 a The CPG and motoneuron (MN) model. Units 1, 2, 3
(left tripod) and 4, 5, 6 (right tripod) are coupled through mutually
inhibitory synapses and modulate each leg’s hip and knee extensor
(resp. flexor) motoneurons via inhibitory (resp. excitatory) synapses.
Inhibitory synapses shown as filled circles; excitatory synapses as semi-
arcs; only right front legmotoneurons shown here. Tonic drive is applied
to all units via the central nervous system (CNS). See Ghigliazza and

Holmes (2004a, §§2-4) for further details. b Proprioceptive sensory
feedback circuit. Positive and negative knee-joint torques are sensed
by neurons s+ and s−, representing campaniform sensilla, that respec-
tively excite and inhibit MNs innervating extensor and flexor muscles.
One right knee circuit is shown, other legs are similar; synapses indi-
cated as in a

receptivity to inputs gi j , which may include feedback as well
as periodic input from the CPG. (Proprioceptive feedback is
discussed in Sect. 2.4.) Without feedback, Eq. (6) can be
rewritten in terms of slowly varying phases ψ j = φ j − ω0t
and averaged over a cycle to yield:

ψ̇ j = εδ j + ε

2π

∫ 2π

0
Z j (τ )gi j (τ, ψ j − ψi + τ)dτ, (7)

def= Gi j (ψ j − ψi ), (8)

where τ = ψ j + ω0t [see Guckenheimer and Holmes
(2002, §§4.1-2) for the averaging theory ofODEs andGhigli-
azza and Holmes (2004a, §5) and Proctor et al. (2010, §3)
for details of the phase oscillator case]. The periodic cou-
pling function Gi j , which depends only on the difference
ψ j − ψi , governs the phase relationship between the CPG
and motoneuron and hence determines fixed points, eigen-
values, sensitivity of fixed points to the frequency difference
εδ j , and entrainment ranges (Proctor and Holmes 2010).

The currentmodel excludes proprioceptive andother time-
dependent inputs to the CPG, so its 6 units run periodically,
sending identical outputs to the left (L) and right (R) tripods
with a half cycle (π ) phase difference. This enforces con-
tralateral reflection symmetry φ1 = φ2 = φ3 ≡ φL(t);
φ4 = φ5 = φ6 ≡ φR(t) with a phase shift. Absent per-
turbations to and feedback from the legs, it produces a
stereotypical double-tripod gait. We may further reduce to
a pair of oscillators which then collapse to a single ODE for
the phase difference θ = φL − φR between the L and R
tripods:

θ̇ = G(θ). (9)

The coupling function G(θ) resembles sin θ (Ghigliazza and
Holmes 2004a, Fig. 8), so that θ = π is a stable fixed point.
Since no time-dependent inputs enter it, the CPG maintains
frequency ω0 and we can replace the individual CPG unit
phasesψi in Eq. (8) by ω0t and ω0t +π , describing a unique
double-tripod gait.

Laborious tuning of the burstingMNswas required to find
spike sequences that produced the experimentally derived
foot forces of Ting et al. (1994). Briefly, Eqs. (1–3) and the
leg geometry were used to find body kinematics and thence
to compute periodic orbits over a range of stride frequen-
cies. From this data, appropriate joint angles and torques,
and hence muscle forces, were derived. MN spike sequences
consistent with these forces were then found by running sim-
ulations of theCPGandbiomechanicalmodel in combination
with an optimization algorithm that used the Matlab routine
lsqnonlin. This iteratively improved and finally delivered
spike numbers and inter-spike intervals for input to eachmus-
cle in the neuromechanical model of Kukillaya et al. (2009).
Hand selection of initial spike data was required for the opti-
mization algorithm. SeeKukillaya andHolmes (2009, §4 and
Figs. 4–9) for details.

Phase oscillators produce no spikes per se, so in Proctor
et al. (2010) and the present work, analytical activation func-
tions a(t) representing calcium release at the neuromuscular
junction, calculated as in Kukillaya and Holmes (2009, sup-
plementary materials S1) from the spike sequences found
above, are input to muscles as their MNs pass appropri-
ate phase values. This simpler phase-reduced setting allows
better understanding of phase ranges in which stable MN
entrainment is possible, cf. Proctor et al. (2010).
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2.4 Proprioceptive feedback of joint torques

Proximal and distal campaniform sensilla, located in the
insect’s exoskeleton, independently detect bending of leg
segments in opposing directions, and neurons within them
fire tonically at rates approximately proportional to force
magnitude (Zill and Moran 1981a; Zill et al. 1981; Zill and
Moran 1981b). As in Proctor et al (2010, §2d), we neglect
detailed mechanisms (cf. Kukillaya et al. 2009; Proctor and
Holmes 2010) and assume that synaptic inputs to the MNs
are determined by joint torques τ± via the linear firing rate
relationship

s±(t) = b + n |τ±| , (10)

with baseline level b and constant of proportionality n. Here
± denotes the torque’s sense, positive meaning that extensor
force exceeds flexor force, tending to extend the leg, and vice
versa. Separate positive and negative sensors are allocated to
each joint, and they are assumed to act only during stance
while the leg exerts force on the body. (Swing phases of the
massless legs are not modeled; hence, their effects are nec-
essarily ignored.) The spike trains are relayed, via excitatory
and inhibitory synapses, to extensor and flexor MNs activat-
ing the muscles of the joint in question, so that increased
resistance to leg extension is compensated by increased joint
torque and vice versa. As in Kukillaya et al. (2009) and Proc-
tor et al. (2010), we model feedback from knee joints alone
and include only direct paths from each joint to the MNs
actuating it: see Fig. 2b. Sensory feedback of joint torques is
included only for the simulations of §4.

2.5 The phase-reduced CPG-MNmodel

The phase-reduced model is shown schematically in Fig. 3,
excluding the torque-sensing circuits from the six knee joints,
each of which is as in Fig. 2b. The 6 oscillators of Fig. 2a are
replaced by a single CPG “clock” running at ω0/(2π) Hz,
outputting the periodic spike sequences from Kukillaya and
Holmes (2009) to drive the 24MNs in a feedforwardmanner.
Including feedback, each MN’s slow phase equation is

ψ̇ j = G0 j (ψ j − ψCPG)+εZ j (ψ j +ω0t)[hE
s j (ψ j + ω0t, t)

+ hI
s j (ψ j + ω0t, t)], (11)

(cf. Proctor et al. 2010), where the CPG phase ψCPG = ω0t
for the left tripod ( j = 1 . . . 12) and ψCPG = ω0t + π

for the right tripod ( j = 13 . . . 24), as noted in Sect. 2.3.
Here hE

s j and h
I
s j are excitatory and inhibitory proprioceptive

inputs with reversal potentials V E/I
syn , which take the forms

−sE/I
±, j (t)[Vj (ψ j +ω0t)−V E/I

syn ], where sE/I
±, j are determined

by Eq. (10). Such feedback generally depends explicitly

Fig. 3 The reduced CPG and motoneuron (MN) model. The CPG
“clock” periodically modulates each leg’s hip and knee extensor (resp.
flexor) MNs via inhibitory (resp. excitatory) synapses. Extensor and
flexor MNs are denoted by dashed and solid circles, respectively; sen-
sory inputs are not shown (cf. Fig. 2b)

on time t (because perturbations are unpredictable), but in
unperturbed periodic running, it is (2π/ω0)-periodic and
phase-locked to the CPG, so these terms can further be aver-
aged as in Sect. 2.3 to take the forms HE/I

s j (ψ j−ω0t−ψ
E/I
s j ),

where ψ
E/I
s j specify the phases at which inputs arrive rela-

tive to ψCPG. See Proctor et al (2010, §2d) for more details.
This paper and Ghigliazza and Holmes (2004a, §5) estab-
lish stability of the CPG-MN system, so we do not display
eigenvalues for it here.

2.6 Summary of the full phase-reduced system

Before describing the performance of the phase-reduced
model, we summarize its components and structure. The
mechanical system’s state is given by the body center ofmass
position and velocity, body orientation and rotational veloc-
ity, and stance foot positions relative to the body. Muscle
lengths lm(t) and velocities vm(t) can therefore be found
from the body kinematics and leg geometry. The 6-oscillator
CPG of Fig. 2a (left) is reduced to a clock running at the
stepping frequency, emitting spikes that excite and inhibit
the MNs at appropriate phase values. These in turn create
muscle activations a(t), thus determiningmuscle forces from
Eq. (4) that are added to the passive stiffness and damping
forces to form joint torques. (When proprioceptive feedback
is included, MN spikes are added or deleted, and the acti-
vations accordingly modified.) Hence stance foot forces Fi

can be found and Eqs. (1)–(3) solved. The reduced system
therefore has 24 oscillators for the MNs and 6 equations for
the body mechanics: 30 first order ODEs in all.
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(a) (b)

Fig. 4 a Stride frequency vs. speed for the cockroach B. discoidalis
[solid dots, data from Ting et al. (1994), reproduced from Kukillaya
and Holmes (2009)]. Solid red line shows the protocol of Kukillaya and
Holmes (2009, §6), also used here. b Eigenvalues over the speed range
of the phase-reduced model. Two eigenvalues remain near zero, corre-

sponding to the fast subspace onwhich perturbations decay quickly.One
eigenvalue is unity due to yaw rotation invariance, and the fourth passes
through − 1 near 0.5ms−1, where stability is lost in a period-doubling
bifurcation (Guckenheimer and Holmes 2002)

3 Stability over the animal’s speed range

Legged animals can accelerate by increasing step frequency,
extending stride length, or both. B. Discoidalis employs the
former strategy up to ≈ 0.35ms−1, and lengthens strides
above it (Ting et al. 1994). Under this protocol, the spring-
actuated (Seipel et al. 2004; Kukillaya and Holmes 2007)
and muscle-actuated (Kukillaya and Holmes 2009) models
are stable up to 0.6ms−1, but stability can be lost if one
departs too far from it (Seipel et al. 2004). In previous stud-
ies, the full neuromechanical model (Kukillaya et al. 2009)
and its phase reduction (Proctor et al. 2010) were parameter-
ized to produce a fixed running speed of 0.24ms−1, the CPG
(stepping) frequency ω0 being set at 9.93 Hz. We now show
that the phase-reduced model, without feedback, also pre-
dicts stable running over much of the animal’s speed range.

Following the lead of B. Discoidalis, we adopted the
piecewise-linear frequency and stride-lengthprotocol detailed
in Kukillaya and Holmes (2009, §6), indicated by the solid
(red) line on Fig. 4a. Step frequency was increased up to
0.375ms−1and strides were lengthened above 0.25ms−1 by
adjusting joint angles, and hence TD foot positions [also
see Kukillaya and Holmes (2009, Supplementary Mate-
rials)]. Figure 4b shows the eigenvalues of the resulting
stride-to-stride Poincaré map, indicating stability over the
range 0.03−0.5ms−1. However, increasing ω0 alone did not
suffice to produce stable gaits over this entire range. As
in Kukillaya and Holmes (2009) the scaling factor F0 in
Eq. (4) and the number of spikes in some MN bursts also
had to be increased. Specific values were obtained via the
inverse method described in that paper, and their trends were
generally consistent with experimental observations on B.
discoidalis. Without these adjustments, stability was lost at

≈ 0.35ms−1. We comment on potential implications for
legged robots in the first paragraph of the Discussion.

Unlike the models of Seipel et al. (2004) and Kukillaya
and Holmes (2007, 2009), in which stability is lost at low
or high speeds in pitchfork bifurcations to running in circles,
here a period-doubling bifurcation occurs as a real eigenvalue
passes through− 1 at≈ 0.5ms−1, producing orbits of period
two (Guckenheimer and Holmes 2002). As we shall see in
Sect. 4.1, these “limping” gaits can be stable, and they also
lead to circular CoM trajectories.

4 Reflexive feedback, stability, and
maneuverability

In this section, we extend our preliminary studies of the
effects of inhibitory and excitatory feedback on recovery
from impulsive perturbations (Proctor et al. 2010). We also
investigate turning initiated by transient changes in TD posi-
tions and MN spike phases, and describe a trade-off between
turning performance and stability in straight running.

4.1 Response to impulsive perturbations

As in previous studies (Kukillaya and Holmes 2007; Kukil-
laya et al. 2009), we applied impulsive lateral perturbations at
the beginning of a left (L) stride, using the idealized triangu-
lar impulse described in those papers that approximates the
miniature cannon used in the experiments of Jindrich andFull
(2002). We allowed both excitatory and inhibitory conduc-
tances (gexc, ginh) to range over [0, 0.4] mS cm−2. For each
pair of values, the phase-reduced model was integrated until
it converged on a stable straight running gait at≈ 0.24ms−1,
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Fig. 5 Contour map showing overall heading changes in radians after
impulsive lateral perturbation of the phase-reduced model, over the
space (gexc, ginh) of excitatory and inhibitory sensory feedback conduc-
tances between sensory neurons and MNs. Circles identify parameter
pairs that produce CoM trajectories shown in corresponding colors in
Fig. 6. Gray band indicates region in which straight running is unstable

the impulse was applied, and the resulting heading change
recorded after recovery to straight running. Figure 5 shows
the overall heading changes, which can exceed 2 radians
(115◦). Straight running becomes unstable in the gray band
of values around gexc = 0.1 mS cm−2, for which we do not
show heading changes. In this region, the stable gaits are L–R
asymmetric and themodel runs in circles, as described below.

To illustrate these results, in Fig. 6 (lower left) we show
fiveCoM trajectories corresponding to different conductance
pairs, including the no-feedback case ((0, 0), dashed). One
feedback case (blue, relatively high inhibition) turns more
than the no-feedback case; two others (red, relatively high
excitation; magenta, equally high excitation and inhibition)
turn less. The CoM speed values at successive R and L TDs
shown inFig. 6 (right panels) also indicatemore rapid conver-
gence to the straight gait across these three cases. The fourth
case (black) lies in the unstable region of Fig. 5, and its L (or
R) TD speed switches between two values, while the R (or L)
TD speed remains constant, so that the gait has period 2 with
respect to a full L–R stride. Reflexive feedback has destabi-
lized the straight gait in favor of circular paths, presumably
via a period-doubling bifurcation analogous to that occurring
at ≈ 0.5ms−1 without feedback, indicated in Fig. 4b).

Here we have kept all inhibitory and excitatory con-
ductance pairs equal and have only applied feedback from
sensors at knee joints. Among these examples, the equal
conductance pair (magenta) gives the best perturbation rejec-
tion, but the right hand part of Fig. 5 indicates that even
better rejection can be obtained for higher gexc, although
the results are sensitive to ginh. Indeed, even finer tuning is

possible. Since 2 MNs activate each of the 6 joints in each
tripod, and the 2 sensory neurons associated with each joint
project to both MNs, the 24 synaptic conductances could
be independently tuned to better match the magnitudes of
the respective coupling functions, frequency differences, and
distances from losing phase-locked behavior (cf. Eq. (11) and
Fig. 7b).

4.2 Strategies for turning

Turns require changes in the body’s linear and angular
momenta, the latter being increased and then decreased to
resume straight running. This was achieved for the bipedal
model in Proctor and Holmes (2008) by moving its hip
joint forward and increasing the passive spring stiffness in
the outer leg. The strategy was based on experiments in B.
discoidalis indicating thatmomentumchanges are likely gen-
erated by extending the outside front leg at TD (Jindrich
and Full 1999) (its anterior extremum position raep increases
≈ 11% over normal), and greater force production in the out-
side middle leg. These are illustrated by options 1 and 2 in
Fig. 7a, exercised on the R and L tripods, respectively, in left-
ward turns. In contrast, in Sponberg et al. (2011), also using
B. Discoidalis, it was found that advancing and augmenting
MN spikes to the femoral extensor of the inside middle leg
can produce a lateral impulse toward the leg, and a turn about
a point beyond its foot: option 3 in Fig. 7a.

The present model, with its multi-jointed hexapedal
geometry and musculature, is better equipped to test these
strategies than the passive biped. TD positions can vary inde-
pendently for each leg, and leg forces can be modulated by
advancing or retarding MN bursts. In particular, firing an
extensorMN early, while themuscle is still lengthening, gen-
erates large forces due to the velocity dependence in Eq. (4);
cf. Proctor and Holmes (2010, Fig. 9). This is accomplished
by changing MN frequency to ω j + ε(δ j + δT ), which mod-
ifies the averaged slow phase equation (8) to:

ψ̇ j = εδT + G0 j (ψ j − ψCPG). (12)

The resulting vertical shift in the RHS of Eq. (12) moves
the fixed point; Fig. 7b shows the effect for the right middle
hip extensor (MN j = 5 in Fig. 3).

We study turning in the absence of feedback, and as in
Proctor and Holmes (2008) and Kukillaya et al. (2009) exe-
cute turns over three full strides. To turn left, we transiently
increase the values of raep for the front right and/or δT for the
middle right legs, respectively; all other parameters, includ-
ing raep and δT for left legs, remain unchanged. At the end
of the maneuver raep and δT return to their original values,
allowing the model’s inherent stability to reduce counter-
clockwise angular momentum and restore straight running.
Fig. 8a shows the resulting heading changes over (raep, δT )-
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Fig. 6 Effects of torque feedback. Upper left panel shows CoM
speed V at successive L and R TDs without feedback; lower left
panel shows CoM trajectories for that case (dashed) and for 4 exci-
tation/inhibition pairs (gexc, ginh) = (0.025, 0.25) (blue), (0.1, 0.025)
(red), (0.25, 0.25) (magenta) and (0.075, 0.25) (black). In the latter case

straight running is unstable and the unperturbed body runs in circles.
Red arrows indicate where lateral impulses were applied, at left TD of
20th stride. Right panels show CoM speeds at TD for the 4 cases with
feedback, identified by color as in lower left panel and in Fig. 5
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parameter space, and Fig. 8b shows three examples of CoM
trajectories that undergo larger turns as δT moves from 0 to
0.2. We allowed raep to increase by up to 17% over its nor-
mal value 0.03 m from CoM, and δT to change fixed point
positions by up to ≈ 1.9 radians (cf. Fig. 7b).

We found that turns of up to ≈ 12◦ can be executed by
changing raep alone, and that adjustment of δT , especially
near δT = 0, substantially amplifies these, yielding turns of
up to 85◦. The sensitivity near δT = 0 can be explained by
examining Fig. 7b: small variations in δT cause large changes
in fixed point phase, because the slope of the coupling func-
tion is small at the stable fixed point for δT = 0; moreover,
the slope at the “new” fixed point is larger, implying fast
attraction to it, further increasing the turn angle. [Negative
shifts in δT would destroy both fixed points in a saddle-node
bifurcation (Guckenheimer and Holmes 2002).]

A different strategy was used in Kukillaya et al. (2009):
muscle activations were unchanged, TD positions alonewere
modified. To turn left, the right (outside) front and hind feet
were placed further forward and the left (inside) middle foot
further backward at R TD, producing an additional posi-
tive counterclockwise moment about the CoM throughout
the stance period. This mimics the effect of earlier activation
of the extensor for the inside middle leg, as in Sponberg et
al. (2011, Fig. 7), since that opposes the flexor and cuts short
the swing phase, moving TD backwards. The phase-reduced
model can achieve the same effect by moving the fixed point
as in Fig. 7b, but for the inside hip extensor MN. We do not
explore this option here.

The turning experiments of Jindrich and Full (1999) pre-
dict that the outside middle leg produces much of the force
that changes linear momentum, while the extended TD posi-
tion of the outside front leg generates the angular change.
Our current results show that increased force production at
the outsidemiddle leg has a larger effect than front foot place-
ment, in contrast with the bipedal study (Proctor and Holmes
2008), which found that hip placement had amore significant
effect than stiffening the passive leg. The difference between
the energy-conserving biped and the present actuated model
may be due to latter’s ability to do significant positive and
negative work during a stance phase (Kukillaya and Holmes
2009, Fig. 10) and to produce larger turning moments with
its three stance legs.

In all cases studied, relatively small changes in biophys-
ically relevant parameters can produce large turns in these
models, by breaking the L–R symmetry and creating a tran-
sient rotational instability. This is clearly advantageous for
an insect that needs to be highly maneuverable, and it offers
engineers insight into implementing turns in legged robots;
see Hoover et al. (2010) for an example.

5 More perturbations, climbing, and
exteroceptive feedback

We now use the phase-reduced model to simulate experi-
ments in which a cockroach runs on a moving platform,
carrying a backpack that changes its mass and moment of
inertia. We then investigate climbing by introducing a gravi-
tational component that breaks rotational symmetry. Finally,
we superimpose on the turning mechanism of Sect. 4.2 a
simple linear controller for goal-oriented steering. To bet-
ter identify the effects of these treatments, throughout this
section we exclude proprioceptive feedback.

5.1 Perturbations due to amoving platform and
backpack

As noted in Sect. 4.1, the perturbation experiments of Jin-
drich andFull (2002) used aminiature cannonmountedon the
insect’s back. Model simulations of this appeared in Kukil-
laya et al. (2009) and Proctor et al. (2010). A more recent
experiment imparts a lateral impulse by accelerating a plat-
form on which the insect runs (Mongeau et al. 2012; Revzen
et al. 2013), allowing a wider range of better-controlled
conditions. The insect’s mass and moment of inertia can
be increased by adding elements to a backpack carrying
microaccelerometers (Moore et al. 2010).

In the platform experiments, a range of accelerations were
investigated, from 0.6±0.1 to 1.5±0.2 g over 100ms inter-
vals (Moore et al. 2010; Revzen et al. 2013). We based our
simulations on earlier work, in which shorter acceleration
periodswere used (S. Burden, personal communication). Our
platform accelerates from 0 to 0.05ms−1 over ≈ 40ms,
imparting 1.25 g. We simulate the substrate movement by
displacing the model’s feet laterally, at constant accelera-
tion, during a single stance phase, implicitly assuming that
no sliding occurs.

Figure 9 illustrates recovery of the phase-reduced model
for both the platform and cannon perturbations. The effects
of the former on CoM speed and body orientation are much
weaker than those of the cannon, but recovery from pertur-
bations is monotonic in both cases: all state variables decay
from stance to stance in a manner consistent with real, stable
eigenvalues in the linearized Poincaré map. Here the residual
body orientation θpert(t) − θunpert(t), the difference between
orientations for perturbed and unperturbed runs, is plotted.
The decrease in forward CoM velocity in the platform sim-
ulation is similar to that of Revzen et al. (2013, Fig. 4C),
but the lateral velocity response is much weaker (not shown
here). This may be caused by our shorter acceleration dura-
tion or is possibly due to the insect’s feet sliding during the
perturbation.
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Fig. 9 CoM speeds v and residual body orientations θpert − θunpert during perturbations by the moving platform (top) and rapid impulse device
(bottom). R/L denote liftoff and touchdown events; perturbations begin in second L stance and last ≈ 40ms for platform and 4ms for cannon

Fig. 10 Residual body orientations θpert − θunpert , averaged over mul-
tiple (N) experimental runs. Three conditions are shown: control with
“bare” backpack (blue); 90% increase in mass (red), and 960% increase

in moment of inertia (green). Solid lines showmeans; dashed lines indi-
cate standard errors. . Figure courtesy ofS.Revzen, S.Burden,T.Moore,
J-M. Mongeau, and R. Full

Figure 10 shows residual body orientations for a con-
trol condition experiment with the backpack alone, and for
experiments with increased mass and substantially increased
moment of inertia. Note that residual body orientation
changes sign over the course of 300ms (≈ 4−8 steps, cf.
Fig. 10), implying that the velocity vector relative to body
centerline should change likewise (Revzen et al. 2013). This
is incompatible with the model’s real eigenvalues, an obser-
vation to which we return in Sect. 5.3.

Figure 11(top) repeats the results of Fig. 9(right) and also
shows residual orientations for the model with increased
mass and moment of inertia, and Fig. 12 illustrates how
these treatments affect the eigenvalues. Typical mass and
moment of inertia of B. discoidalis are shown, along with
the largest experimental values tested (Revzen et al. 2013),
and values at which the model becomes unstable. Stability
is lost at ≈ 50% mass increase, substantially below the 90%
value tested (Fig. 12a: hence we show a response for 40%
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Fig. 11 Residual body orientations θpert−θunpert for model simulations
of platform (top) and cannon (bottom) experiments. Colors at top cor-
respond to the cases of Fig. 10: control (blue); 40%mass increase (red),
and 960% moment of inertia increase (green)
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(a) (b)

Fig. 12 Eigenvalues of the phase-reduced model linearized at the
straight gait at preferred running speed 0.24ms−1 as mass (a) and
moment of inertia (b) are varied. Arrows indicate typical parameter

values for normal insect, values at which straight running becomes
unstable, and the largest values used in experiments of Revzen et al.
(2013), cf. Fig. 10
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Fig. 13 Eigenvalue paths for the feedforward phase-reduced model with increasing external force as described in the text, representing running up
ramps of increasing angle β. a Paths in the complex plane; b real and imaginary parts

increase in Fig. 11). Despite this, recovery is qualitatively
similar to the observations of Fig. 10: residual orientations
of the normal and increased mass cases are close, and the
decay rate of the latter is slightly slower. In contrast, the sta-
bility boundary for increased moment of inertia is somewhat
higher than the experimentally tested values, predicting that
the insect can sustain more than twelvefold increases while
remaining stable. Also, the magnitude of the slow eigenvalue
modestly increases up to≈ 900% increase inmoment of iner-
tia (Fig. 12b), indicating a slower recovery rate, in qualitative
agreement with the green trajectory of Fig. 10.

5.2 Climbing

Cockroaches employ double-tripod gaits for level running
and climbing, but foot force directions can differ radically
between these behaviors. Forces typically point outward in
horizontal running, but inward (toward the CoM) and down-

ward in vertical climbing, allowing the insect to advance
against gravity (Goldman et al. 2006). To understand the
transition from level running to climbing, cockroaches have
been run up ramps of increasing angle (Jayaram et al. 2010),
and a simple model has been developed based on the bipedal
point mass model of Schmitt and Holmes (2000). This uses
passively sprung legs and can produce stable gaits over a sub-
stantial range of speeds on both uphill and downhill slopes
(Schmitt and Bonnono 2009).

Here we investigate the stability of climbing by applying a
constant force Fgrav = −mg sin β î at the CoM, opposing the
running direction +î in the inertial frame. Here g is gravita-
tional acceleration andβ the rampangle.All other parameters
are unchanged. Figure 13 shows eigenvalues of the Poincaré
map linearized about straight running. As β increases from
zero and rotational invariance is lost, the unit eigenvalue (cf.
Fig. 4b) drops below 1 and collides with the weak eigenvalue
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to produce a complex-conjugate pair that briefly leave and
reenter the unit circle, subsequently meeting on the real axis
before an eigenvalue passes through−1 in a period-doubling
bifurcation at β ≈ 33o. When all four eigenvalues lie inside
the unit circle, the climbing gait is (fully) asymptotically sta-
ble.

Insects can ascend vertical walls (Goldman et al. 2006),
while ourmodel loses stability on amodest incline. However,
we have not modified muscle activations a(t), scale factors
F0 [cf. Eq. (4)] or other parameters chosen for level running.
Indeed, lacking individual foot force and position data on
sloping substrates, we cannot carry out the inverse fitting
procedure of Kukillaya and Holmes (2009) to match lateral
leg forces that push outward for β = 0 and transition to
pulling in as the slope steepens. Such parameter tuning, with
or without proprioceptive feedback, could stabilize climbing
over a wider range.

Here gravity breaks the rotational symmetry and intro-
duces a preferred direction, stabilizing the neutral rotational
mode and eliminating all other solutions except downhill run-
ning in the direction − î, which we find to be unstable for
all but very small negative angles β (simulation results not
shown). Rotational symmetry is also broken by the insect’s
preferences to seek dark areas and avoid touching the plat-
form’s side walls, qualities used in experiments to encourage
straight running. These facts, and particularly the genera-
tionof complex-conjugate eigenvalues, partiallymotivate our
final study of a simple control algorithm for steering.

5.3 Steering by exteroceptive feedback

Previous work investigated how feedback from antennae can
guide cockroaches in running along walls (Cowan et al.
2006), leading to a control algorithm built on the passive
bipedal model that maintains distance from the wall (Lee
et al. 2008). Little is known about other navigation mecha-
nisms, so here we take a more abstract viewpoint, assuming
merely that exteroceptive sensing provides a desired direc-
tion in inertial space that the animal seeks to follow.We show
that a simple state feedback system can accomplish this, and
that the resulting dynamics has stability characteristics con-
sistent with the insect’s behavior in the platform perturbation
experiment ofMongeau et al. (2012) andRevzen et al. (2013)
(Sect. 5.1).

We adopt the two strategies of Sect. 4.2 (options 1 and
2, Fig. 7), using extension of the outside front leg and rel-
ative phase of the hip extensor MN of the outside middle
leg as feedback control inputs. These are applied at TD and
held throughout each stance phase, as in feedforward turning.
We may still use a Poincaré map, but it must be composed
of separate maps for L and R stance phases, since different
feedback will generally be applied at every TD. These maps
are defined as

(vn+1, δn+1, θn+1, ωn+1) = PL (vn, δn, θn, ωn,un), (13)

(vn+2, δn+2, θn+2, ωn+2) = PR (vn+1, δn+1, θn+1, (14)

ωn+1,un+1),

where u = (δLT , δRT , rLaep, r
R
aep) is the control input and P =

PR · PL. We compute linearized maps DPR and DPL at a
fixed point xn = x∗L/R + x̄n , where x̄n = (vn, δn, θn, ωn)

represents deviation from an uncontrolled straight gait with
L and R TD states x∗L , x∗R and preferred running direction
θ∗, and un = u∗ + ūn is the control input. This yields a
discrete linear control system:

x̄n+1 = AL x̄n + BL ūn, (15)

x̄n+2 = AR x̄n+1 + BR ūn+1, (16)

in which the matrices AL, AR are the linearized L and R
stance maps without control, and BL, BR express the effects
of the control inputs (δLT , rLaep) and (δRT , rRaep) on the left and

right tripods. Hence the second and fourth columns of BL,
and the first and third of BR, are zeroes.

We implement a state feedback strategy ū j = Kx̄ j that
provides a control input ū j at the j’th TD based on current
deviation θ j from θ∗. The same matrix K is used in both
L and R stance maps because the matrices BL,BR direct
feedback to the appropriate legs. For simplicity, we choose
all entries in K to be zero except the third column c1 that
weights deviations θ j with uniform gain c over the four state
variables. Equations (15) and (16) can now be combined into
a full L-L linearized stridemap describing the local dynamics
of the controlled system:

x̄n+2 = (AR + BRK)(AL + BLK) x̄n
def= G x̄n . (17)

Figure 14 shows how the two largest eigenvalues of G
change as gain increases, colliding and becoming complex
conjugates until they again become real and one of them
passes through −1. Here, unlike Fig. 13, all eigenvalues
remain inside the unit circle until the period-doubling bifur-
cation, implying that the controlled system is stable. This
model also shows that a single state feedback system regu-
lating steering can produce complex eigenvalues, as observed
in climbing and implicit in the insect’s damped yaw oscilla-
tion during recovery from the platform perturbation: Fig. 10.
In all these cases, a preferred direction breaks rotational sym-
metry, allowing the neutral eigenvalue to enter the unit circle
and hence produce oscillatory dynamics. In this regard, exte-
roceptive feedback could produce the response observed in
the platform perturbation experiment.

Finally, we note that one could use different weights in
K, and/or add feedback from angular velocity ωn , to better
match the data or potentially improve performance.
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Fig. 14 Eigenvalue paths for the
phase-reduced model with
heading feedback Eq. (17), but
without proprioception, as gain
c increases. The strongly stable
eigenvalue pair remain of size
O(10−2) and a period-doubling
bifurcation occurs at c ≈ 0.15.
See text for further details

(a) (b)

6 Conclusion and discussion

This paper extends our earlier study of the dynamics and sta-
bility of a phase-reduced, hexapedal, neuromechanicalmodel
for insect locomotion (Proctor et al. 2010) (Figs. 1, 2, 3).
By increasing both stepping frequency and stride length and
adjusting motoneuron outputs and muscle forces in agree-
ment with earlier work (Seipel et al. 2004; Kukillaya and
Holmes 2007, 2009), we found stable gaits over most of the
cockroach’s typical speed range (Fig. 4). These parameter
variations with speed are consistent with cockroach behav-
ior, in which frequency initially increases and stride lengths
increase at higher speeds, allowing the animal to remain
within a stable region in parameter space. Specifically, the
mechanical models in Seipel (2004, Fig. 14) and Kukillaya
and Holmes (2007, Figs. 11, 12) display unstable regions
outside a diagonal channel in speed-stride frequency space.
Since neither model contains neural components or proprio-
ceptive feedback, the observation on stepping frequency and
stride length may be useful in designing legged robots that
operate over wide speed ranges.

We then showed that reflexive feedback of joint torques to
motoneurons can modulate the response to impulsive lateral
perturbations. Specifically, an appropriate balance of exci-
tation and inhibition can reduce heading changes (Figs. 5,
6). Moreover, straight running gaits can be destabilized by
changing foot positions and muscle forces, moving the cen-
ter of pressure and creating transient growth in body angular
velocity tomake turns. Small changes in front leg touchdown
positions and timing of middle-leg extensor activations can
produce turns of almost 90◦ within three strides (Figs. 7,
8). Thus, the model can be steered by small modulations,
as in Proctor and Holmes (2008) and Kukillaya and Holmes
(2009), confirming the findings of Jindrich and Full (1999)
that changes in the symmetric double-tripod gait can lead
to substantial turns and revealing a mechanism that achieves
this. [See the section “Turning dynamics can be characterized
as aminormodificationof straight-ahead running” in Jindrich

and Full (1999).] However, depending on the balance of exci-
tation and inhibition, reflexive feedback can negatively affect
turning performance.

To further investigate this, we computed eigenvalues of
the Poincaré map for the four stable cases of Fig. 6 (blue,
red, magenta and dashed). The unit eigenvalue and strongly
stable pair remained essentially unchanged, but the weakly
stable eigenvalue increased to 0.60 and 0.58 for the blue and
red trajectories, and decreased to 0.47 for magenta, com-
pared to 0.54 without feedback, partly consistent with better
rejection of the perturbation. These four cases also illumi-
nate how feedback can affect turning. Setting raep = 0.035
and δT = 0.2, which yields a 1.24 radian turn without feed-
back (Fig. 8, Sect. 4.2), the blue, red and magenta cases,
respectively, produce turns of 0.93, 0.69 and 0.72 radians,
all smaller than the feedforward case, illustrating a trade-off
between maneuverability and stability.

A study of the knifefish Eigenmannia virescens that
also uses a robot and mathematical models (Sefati et al.
2013) shows that such a trade-off can be eliminated by
producing mutually opposing forces. Defining stability as
“the resistance to and recovery from disturbances to an
intended trajectory,” and maneuverability as “the relative
amplitude of the control signal required to change movement
direction,” the authors argue that forces generated by counter-
propagating waves in the fish’s ribbon fin can simultaneously
stabilize station-keeping and enhance maneuverability. Here
we also characterize stability via eigenvalues of the Poincaré
map Eq. (5), as in Full et al. (2002), and gauge maneuver-
ability by the magnitude of turns (cf. Fig. 8). We find that
two of our Poincaré map’s four eigenvalues typically remain
small, conferring passive stability in those modes, while the
other two are closer to 1, indicating potential instability. An
earlier study (Proctor and Holmes 2008) showed that allow-
ing an eigenvalue to cross the unit circle for a few strides
destabilizes forward running, resulting in sharp turns due to
the intrinsic nonlinear dynamics prescribed by the body-leg
mechanics of locomotion in the ground plane.
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In the presentwork, two parameters can control turning, as
realized via outer front leg TD placement and timing of MN
spikes to the outer middle-leg hip extensor in Sect. 5.3 (also
see Sect. 4.2 and Figs. 7-8). We believe that this mechanism
is analogous to moving the node between the ribbon waves
and tuning their frequency in Sefati et al. (2013). That study
also suggests that two control parameters can modulate a
fairly complex behavior. The fact that two modes—a neutral
and a weakly stable or unstable eigenvalue—are important
in cockroach turning, as noted again below, suggests that the
insect’s dynamics offer a similar trade-off between maneu-
verability and stability. Future studies should estimate the
work required for steering to allow quantitative comparisons,
as in Sefati et al. (2013, and Supplementary Information for
that paper).

We also examined responses to uniform acceleration of
the ground plane, to increases in mass and moment of iner-
tia (Figs. 9, 10, 11, 12), and changes in stability caused by
ascending a slope (Fig. 13). Finally, we developed a simple
feedback controller that actuates the steering mechanism to
maintain a desired heading (Fig. 14).

Throughout, we find that a weakly stable eigenvalue plays
a key role in the model’s response to perturbations, as
described above and previously in Kukillaya and Holmes
(2009, §7). When climbing against a gravitational field
(Sect. 5.2) or subject to control that maintains heading direc-
tion (Sect. 5.3), this eigenvalue interacts with an otherwise
neutral, unit eigenvalue associated with yaw, generating
an oscillatory mode which can become unstable. Under-
standing how actuation and feedback influence these critical
modes would further illuminate control systems employed
by insects and suggest mechanisms for controlling legged
robots. In summary, our work shows that a relatively simple
phase-reduced model allows inclusion of neural feedback
while capturing key aspects of dynamical behavior, so we
believe it could contribute significantly to such studies.
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