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Fluid flows, governed by the Navier-Stokes equations, are spatio-temporal systems that often
exhibit complex behaviors whose modelling and physical understanding are still the object of
ongoing research. The challenges that arise when studying such systems are typically related
to their high dimensionality and their nonlinear nature. The latter, in the form of an energy-
conserving, quadratic nonlinearity (u ·∇u), is responsible for the interaction and energy exchange
between different time- and length-scales. Said nonlinear interaction is especially relevant in flow
separation, which is a common phenomenon that is typically induced by adverse pressure gradients
and geometric discontinuities and leads to energy loss and increased drag. Vortical structures of
different length- and time-scales usually form at and downstream of the separation point, and
their nonlinear interaction may give rise to complex phenomena such as ”lock-on”. In the interest
of controlling this type of flow, it is therefore necessary to understand the physics behind such
nonlinear mechanism.

Modelling the linearities: Resolvent Analysis

Resolvent analysis is a tool that finds its roots in linear, modern control theory and leads to an
input-output representation of a given system. It is common, in incompressible fluid mechanics,
to consider the fluctuations of the velocity and pressure fields about a nominal base flow (often
times taken to be the temporal mean flow) and cast the discretized system of equations as follows:

M
d

dt
q = Aq + f(q) (1)

where q = [u, v, w, P ]T ∈ RN is the state vector of fluctuating quantities, A ∈ RN×N is the
Navier-Stokes operator linearized about the temporal mean flow, M is a matrix of weights and
f(q) ∈ RN is a nonlinear function of q. In the framework developed by Jovanovic and Bamieh
([1]) f(q) is treated as an arbitrary input, u = ûeiωt. Moreover, assuming global forcing, the
system can be cast in the following input-output form:

q̂ = (iωM−A)−1û (2)

where H(iω) = (iωM − A)−1 is the input-output (resolvent) operator. The resolvent can then
be SVD-decomposed to obtain the output modes and the forcing modes at a fixed frequency, ω.
Although the output modes can also be computed from data, using Spectral Proper Orthogonal
Decomposition (SPOD) ([4]), resolvent analysis allows to compute both the output and the forcing
modes at once from the mere knowledge of the time-mean flow, without having to resort to
expensive forward and adjoint CFD simulations. Furthermore, it is often the case that the resolvent
operator is low rank ([2], [3]), meaning that its action can be accurately captured by the first few
output and forcing modes along with the corresponding singular values, and this is of course
advantageous inasmuch as it allows for a reduced-order representation of the dynamics of the
system at the frequency under consideration. However, while the resolvent is indicative of the
linear dynamics of the fluctuation field about the time-mean flow, the difficulties in the context
of a frequency-domain analysis are tied to the nonlinear forcing term, f(q).

Modelling the nonlinearities: Describing Function Analysis

First and foremost, the nonlinear operator in the Navier-Stokes equation is static and energy-
conserving. Stationarity is indicative of the fact that the operator is frequency-independent, while
energy-conservation, a special case of passivity ([5]), refers to the fact that it does not produce nor



dissipate energy in the system. The nonlinearity, in fact, is only responsible for the redistribution
of energy across all frequencies, and its contribution to the dynamics of the system is shown in
the block-diagram representation below:

H(iω)

f(·)

qf(q)

Nonlinear systems in feedback form can be studied using describing function analysis, which is a
tool rooted in nonlinear feedback systems and originally used to model the effect of static non-
linearities such as staturations and dead-zones ([5]). An extended version of describing function
analysis was successfully tested on a 3-dimensional model problem whose nonlinearity is similar to
the nonlinearity in the Navier-Stokes equation (i.e. static, quadratic and energy-conserving). A fu-
ture direction will be to extend this approach to high-dimensional systems in order to (potentially)
incorporate it in existing frequency-domain analyses of fluid flows.

References

[1] Jovanovic, M. R., Bamieh, B., Componentwise energy amplification in channel flows, J. Fluid
Mech., 2005

[2] McKeon, B. J., Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid
Mech., 2010

[3] Luhar, M., Sharma, A. S., McKeon, B. J., Opposition control within the resolvent analysis
framework, J. Fluid Mech., 2014

[4] Towne, A., Schmidt, O. T., Colonius, T., Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis, J. Fluid Mech., 2018

[5] Khalil, H. K., Nonlinear systems, 3rd edition, Prentice Hall, 2002


