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Analysis of stochastic processes on graphs has re-
ceived significant attention from a wide range of re-
search fields including controls, theoretical ecology,
mathematical physics and discrete probability theory.
Different frameworks such as game theoretic mod-
els, simple and complex contagion processes, coloring
models and particle interaction models, have been
developed in this context to model natural and arti-
ficial phenomenas of interest. These models can be
effectively utilized to study key features of collective
dynamics in multi agent networks. Competitive and
cooperative populations exhibit a rich set of behaviors
consisting dominance, consensus and optimum trade-
offs.

In decision theory, Multi-armed Bandit problems
serve as a model that captures the salient features of the
trade-off between exploring and exploiting. [1]. In this
problem, an agent is repeatedly faced with the task of
choosing an option from a set of options. After every
execution of action, the agent receives a numerical
reward drawn from a specific unknown probability
distribution. The goal of this exercise is to maximize the
cumulative reward in the long run. This is equivalent
to minimizing the cumulative regret. If all the reward
probability distributions are known, the agent achieves
maximum expected cumulative reward by consistently
sampling from the option with maximum expected re-
ward. In a realistic scenario where reward distributions
are unknown, the agent is required to perform sufficient
exploring to estimate the expected reward values of
options and identify the best option while exploiting
the options with high estimated expected reward values
to maximize instantaneous rewards.

Existing literature has extended this problem to
multi-agent setting with deterministic interactions [2],
[3]. Each agent observes either estimates or instanta-
neous rewards and actions of his neighbors according to
a directed or undirected static network graph. As a part
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of my current research, I have extended this problem to
a multi-agent setting with heterogeneous stochastic in-
teractions. A set of agents are simultaneously choosing
options and trying to maximize individual cumulative
rewards. I considered the case where each agent can
observe actions and rewards of his neighbours (1-
hop neighbors) through stochastic interactions. At any
given time step the agent k observes each of his
neighbors with probability pk. Since agent interactions
are probabilistic and probability values are agent based,
observations are made according to a dynamic directed
network graph. In this work, I interpret the observa-
tion probability values of agents as their sociability.
According to the interpretation, high (low) sociability
values imply that agents pay more (less) attention to
their neighbors.

In a heterogeneous sociability distribution with a ho-
mogeneous degree distribution, it is apparent that high
sociability values correspond to obtaining more obser-
vations, hence better performance. With this intuition,
one would expect that relative performance ranks will
be ordered according to individual sociability values.
This is in fact true in a well mixed multi-agent system
where all agents observe each others instantaneous
actions and rewards through stochastic interactions. For
this case I proposed a relative performance measure,
based on individual sociability values, to predict ranks
of agents according to their performance. The proposed
measure agrees with the analytical and computational
expected cumulative regret bounds.

However, appealing contradictions to this suppo-
sition occur, in cyclic network graphs, when agents
with equal or fairly different sociability values, have
neighbors who fall into two extremes of sociability
spectrum. Having neighbors with less sociability can
be equivalently interpreted as having neighbors who
explore more. This allows an agent to exploit more to
increase instantaneous rewards while gathering suffi-
cient information to identify the best option through
observations. As a result, an agent with a reasonable
sociability value and neighbors who are less sociable,



can outperform an agent who has a higher sociability
value and neighbors who are more sociable. Based
on this, I proposed a relative performance measure,
that agrees with analytical and computational expected
cumulative regret bounds, as a function of individual
sociability values and sociability values of neighbors.

A cascade phenomena emerges in more complex
settings when performance of an agent is significantly
affected by sociability values of n-hop neighbors with
n ≥ 2. Better performance can be obtained by having
n-hop neighbors who are less sociable with odd n
values and n-hop neighbors who are more sociable with
even n values. This opens up the possibility of a natural
extension to incorporate adaptive sociability dynamics
with positive and negative feedback. Often in realistic
scenarios observing neighbors has a cost associated
with it. This motivates agents to increase or decrease
their sociability values according to cost and sociability
values of neighbors. For instance, in a high observation
cost setting, if an agent has a few 1-hop neighbors with
high sociability values and more 2-hop neighbors with
low sociability values, it is more beneficial to have a
low sociability value. I plan to explore this direction
by defining dynamics with positive 1-hop neighbor
feedback and negative 2-hop neighbor feedback.

This problem can be reformulated by adapting a
game theoretic model [4] in a case where agents chose
sociability values from a discrete set. Simplest case is
agents choose between two probability values, defined
as high (H) sociability and low (L) sociability. Maxi-
mum benefit bH→L can be obtained by being more so-
ciable and observing a less sociable neighbor. In a cost
free setting, following the similar convention, relative
benefits can be given as bH→L > bH→H > bL→H >
bL→L. Introducing a observation cost can change the
ordering of benefits. (i. e. It is possible to obtain
more benefit by being less sociable when observing
a more sociable neighbor. bL→H > bH→H). In contrast
to deterministic payoff matrices in conventional game
theory, I intend to utilize a probabilistic payoff matrix.
This is because, at any given time step, having a low
sociability neighbor does not guarantee that the agent
observes a reward from a less rewarding option, but
it increases the chance of observing a sample from a
suboptimal option.

Up to present I have considered the degree distri-
bution to be homogeneous. I plan to further this work
by analyzing the effect of graph topology by incorpo-
rating random graphs to capture heterogeneous degree
distributions. Simplest case in this setting is, analyzing

relative performance ranks for a set of homogeneous
agents. (All agents have equal sociability values.) It is
natural to assume that relative performance ranks of
agents will correspond to the relative degree distribu-
tion of agents. However, in more complex settings two
agents with same number of degrees can have distinct
performance ranks due to their centrality. I plan to
extend this to analyze relative performance ranks in
a network of heterogeneous agents with heterogeneous
degree distributions.

Another direction I am interested in pursuing is,
analyzing performance of agents in dynamic envi-
ronments. In foraging, animal groups exploit feeding
grounds known for better resources. Due to continuous
consumption eventually resources grow thinner and
animals start exploring for better feeding grounds. After
a certain period of time, resources grow back and
abandoned feeding grounds become rewarding. This
can be captured by a dynamic MAB model where
expected reward value of an option decreases when it
is chosen and increases when it is not chosen. In a
multi-agent setting it is less complicated to assume that
increasing and decreasing rates are known to the agents.
Since interactions among agents are stochastic, agents
do not know the total number of times each option has
been sampled. In a setting where agents observe in-
stantaneous actions and rewards of neighbors, they are
required to utilize observed reward values to estimate
the total number of times each option has been sampled.
This allows agents to predict the expected reward
values of options based on current estimates. I plan to
explore effectiveness of this approach analytically and
computationally.
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