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In industry, Reynolds-Averaged Navier-Stokes (RANS) is still the standard for simulating turbulent flows

in engineering applications [1]. This is due to the relatively cheap computational cost of RANS compared

to Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS). However, RANS is still limited

by the accuracy of its closure models. RANS closure models introduce multiple kinds of uncertainty, the

most important of which are model form uncertainty and parametric uncertainty. In this work the focus will

be on model form uncertainty, which arises due to assumptions made regarding physics, either in an effort

to reduce the complexity (computational cost) of the physics being modeled or to model physical processes

or phenomena that are not well understood. In many RANS models, model form uncertainty is one of the

largest forms of uncertainty due to the nature of the physical assumptions made in the closure models.

Previously, the standard for quantifying uncertainty has been to treat the turbulent model variables as

random variables and propagate this uncertainty through the model, ultimately obtaining a probability den-

sity function (PDF) for the quantity of interest (QoI). This method only captures the uncertainty associated

with the parameters, giving the user the optimal value of the model parameters for the given flow. This

means that the model form uncertainty is not quantified or it is embedded into the parameter uncertainty [2]

so is not well understood in this formulation. More recently, research has addressed this issue and quantified

the model form uncertainty using data-driven techniques. These data-driven techniques use high fidelity

data from DNS or experiments to aid in closure of the turbulence model [1] [3] [4]. While many of these

data-driven methods that address model form uncertainty are less physics-blind than the previously used

parametric uncertainty frameworks, they still favor the use of data from experiments and simulations over

understanding the physical assumptions in quantifying uncertainty. In this work the focus will be on more

physics-based methods that consider the nature of the physical assumptions to quantify model error.

Much of the recent work quantifying model form uncertainty in RANS has been based on the work

from the Iaccarino group [5] [6] [7]. Here, the anisotropic Reynolds stress tensor aij is decomposed into its

eigenvalues and eigenvectors, and perturbations are then introduced into the eigenvalues in order to provide

error bounds on the base RANS model. The decomposition of aij results in a direct representation of the

magnitude, shape, and orientation of the Reynolds stresses via the turbulent kinetic energy, and eigenvectors

and eigenvalues of the anisotropy tensor, respectively. In this way perturbations can be introduced into

these three different aspects of the Reynolds stresses, and the uncertainty in the solution can be fully

understood. In the framework for uncertainty estimation, they present three main steps: using a marker

function the flow field is divided into regions where the model is trusted and regions where it is not. Then,

perturbations are introduced into the regions where the model has been marked as untrustworthy, and finally

these perturbations are propagated through to the QoIs. Much of the work in [5], [6], and [7] has focused on

the injection of uncertainty through perturbations to the magnitude, shape, and orientation of the Reynolds

stresses, which ultimately uses the limiting states of the realizable Reynolds stresses as error bounds and

does not leverage the physical assumptions. Little attention has also been paid to the marker function that

defines where the model deviates from the known flow physics. Some of the marker functions that have been
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proposed are distance from the wall in channel flow [7] and deviation from parallel shear flow in flow over a

wavy wall [5]. These marker functions typically rely on expert knowledge of the flow, as with the example

of using deviation from parallel shear flow in cases where separation is anticipated. In the present work, we

derive marker functions that are agnostic to the target flow geometry. Building on previous work [8], we

introduce a framework for marker functions that relies only on the model assumptions to characterize the

model form uncertainty.

The framework for the marker functions is formulated as the transport of the model error. In RANS

modeling, closure approximations are used to close the Reynolds stress term. In doing so, model error is

introduced. The most basic formulation that represents this error considers the truth, given by R, and

a model with physical assumptions resulting in lower fidelity, given by M. The model error e is then

represented as

R−M = e (1)

In this work the truth and the model are given by transport equations of physical quantities, which means

that we can re-frame Eq. 1 as the transport of the model error given by
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The significance of deriving a transport equation for the model error is that we can then use this transport

equation to propagate the error during a numerical simulation in order to understand where the model is

the worst and how the deviation of the model from the truth evolves spatially and temporally.

Presently, this framework has been applied to the Boussinesq assumption and the gradient diffusion

hypothesis. For the Boussinesq assumption, we have a general framework given by
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where the truth is the transport of the Reynolds stresses and the model is the transport of the Boussinesq

assumption used to model the Reynolds stresses. In order to derive the full model error transport equation

we subsequently plug in the model assumption plus the error for all Reynolds stress terms, which will yield an

equation with terms that contribute the most to the error. In the final model error transport equation some

closure is required due to the introduction of unclosed terms from the Reynolds stress transport equation.

Present work is focused on testing this framework on turbulent channel flow, which is known to produce

errors near the channel walls in RANS simulations. Preliminary results have supported this knowledge and

more testing will verify this for different two equation RANS models, such as k− ε and k− ω. Additionally,

other flow configurations will be tested to verify the validity of these models for a variety of flows and closure

models.

Future work will look into benchmarking different methods for UQ and applying the current framework

to multi-physics systems, which have multiple sources of model form uncertainty. Understanding the con-

tribution of these sources will be important for application in model adaptive codes, where above some

uncertainty threshold the model fidelity is increased. Ultimately, this will be important for increasing the

efficiency of model-based computational physics simulations.
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