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I. GLOBAL MODEL REDUCTION

Many important tasks in engineering require us to
efficiently model and predict the behavior of complex
spatiotemporal systems like fluid flows. Modeling such
systems is particularly challenging because of their
high dimensionality and emergence of complex behav-
ior including turbulence. Computational Fluid Dynamics
(CFD) techniques are becoming more sophisticated and
accurate, yet lack the speed needed to evaluate objective
functions used for design optimization or reinforce-
ment learning-based control of large-scale systems. Even
though some modeling is used to reduce the cost of
simulations including sub-grid scale models in LES and
turbulence models in Reynolds Averaged Navier-Stokes,
CFD relies on fine discretization to capture the behavior
of governing equations. While CFD simulations can be
thought of as dynamical systems, the state space is too
high dimensional for modern control system design.

Luckily, fluid flows are not completely random and
display a range of coherent structures which have re-
cently been used to create low-dimensional models and
obtain insights about the fundamental behavior [1]. Data-
driven model reduction and system identification has be-
come attractive due to availability of detailed simulations
and experimental data. Some techniques which fall under
this category include the Proper Orthogonal Decompo-
sition (POD) and Galerkin projection method [1], Bal-
anced Proper Orthogonal Decomposition (BPOD) [2],
Dynamic Mode Decomposition (DMD) and its variants
[3], [4], as well as Recurrent Neural Networks (RNNs)
[5], [6]. In all of these methods, simulation or experi-
mental data are taken from the complete system or sub-
domain under investigation and used to learn appropriate
features for building reduced order models. We refer to
the above approach as “global model reduction” since
features and reduced order models of the whole system
are being discovered.

My work so far relates to the Extended Dynamic
Mode Decomposition (EDMD) [7] and its kernel method
variant KDMD [8] which provide data-driven approxi-

mations of the Koopman operator on dictionaries of ob-
servables. In particular, I have been focusing on develop-
ing methods for discovering extremely low-dimensional
subspaces of observables which contain rich information
about the full high-dimensional state and its evolution.
For this purpose I combined a deep contractive autoen-
coder with a linear dynamics model for the encoded
observables to form an architecture I call a Linearly-
Recurrent Autoencoder Network or LRAN. Using deep
neural networks allows highly complex features to be ex-
tracted from the data and has recently been successfully
used to learn dictionaries for EDMD [9].

Up to the present, all methods have relied on lin-
ear reconstruction of the full state from the feature
space. This places a rather restrictive assumption on
the observables used to form a reduced order model —
namely that the full state can be recovered in their span.
Instead, the LRAN incorporates a nonlinear decoder
neural network which is trained simultaneously with the
encoder and the state transition matrix. This forces the
learned observables to be highly informative in order
to nonlinearly reconstruct the full state while retaining
the property of linear dynamics. Furthermore, nonlinear
reconstruction using the deep decoder network allows for
an extremely small subset of observables to be learned.

The LRAN can be unfolded for an arbitrary number
of time steps allowing us to take advantage of long
data sequences. This helps the encoder to learn low-
amplitude features which have large influence on the
future dynamics of non-normal systems. The LRAN has
already achieved impressive results on a cylinder wake
flow problem as well as artificial dynamical systems
nonlinearly embedded in images. I am currently in the
process of training an LRAN on data produced by
simulating the Kuramoto-Sivashinsky equation. A paper
intended for the SIADS Journal is forthcoming.

As it turns out, EDMD and KDMD can be made
into a kind of shallow LRAN unfolded for a single
time step. The method begins by constructing an over-
specified linear model of the dynamics in a nonlinear
feature space using EDMD or KDMD. Treating this as a



state-space system together with output given by linearly
reconstructing the full state, a balanced reduced order
model can be found using BPOD. Finally, nonlinear
regression can be used to reconstruct the full state from
the resulting small set of observables.

Future work on LRANs will incorporate control inputs
to the system as well as introducing generative stochastic
networks and stochastic dynamics in order to quantify
uncertainty [6]. Adversarial training [5] will be used
to improve the plausibility of generative reconstructions
including turbulent detail by training the LRAN to fool
a classifier network with its predictions. An interesting
aspect of this work is that neural networks are used to
learn sophisticated features which have simple dynam-
ics in time. I think this is powerful since it enables
humans to interpret these complex features based on
their simple behavior. The idea can be extended to
learning low-dimensional nonlinear normal forms for
high-dimensional systems by adding homogeneous poly-
nomial nonlinearities in the encoded state dynamics.

II. LOCAL MULTI-SCALE MODELING

The model reduction techniques described so far are
applicable only when data coming from the complete
system of interest is available. This limits their flexibility
since they are unable to be applied to new problems with
different spatial domains and boundary conditions. The
aim of the proposed research is to create reduced-order
models which can generalize to new configurations with-
out needing to run expensive simulations or experiments
of the full system.

Previous work in this direction utilizes an equation-
free framework to simulate macroscopic behavior using
pocket-sized microscopic simulators [10]. Macro-scale
coarse-grained states are lifted to the micro-scale and
simulated in small patches. A gap-tooth scheme is used
to evolve these small patches and interpolate the results.
The solution is then restricted to the set of coarsened
features and advanced in time with projective integration.
In theory, the method can be implemented recursively on
a hierarchy of scales in order to efficiently simulate large
domains and times. The primary challenge comes in
identifying coarse-grained features which are informative
enough about the small-scales to enable lifting and
prediction.

I plan to further this work by utilizing deep feature
learning as in the LRAN to perform the restriction
step and identify a recursive hierarchy of renormalized
coarse models. The lifting process will be aided by the
recent developments in generative stochastic networks

[5] which may enable plausible and detailed reconstruc-
tion of microscopic states as well as their probability
distributions.

The proposed framework at each level of the model
hierarchy can be used to learn discrete or continuous
coarsened models. Continuous models are of particular
interest since problem-dependent physics can be imposed
by constraining the structure of the coarsened dynamics
equations. Furthermore, learning a hierarchy of renor-
malized spatiotemporal PDEs might be used together
with unstructured or meshfree solvers to speed up costly
large-scale simulations. Analogies with the Koopman
operator can be drawn in the case that linear renormal-
ized PDEs are learned. Due to the local formulation, the
models can be re-assembled in new spatial domains in
order to make predictions and form low-order models of
the large-scale dynamics.

Recursive coarse-graining using the proposed deep
learning approach may also enable online identification
of coarse equations from fewer fine-scale examples then
would be required to simulate an entire large domain.
A few small patches can be lifted and simulated in
order to provide training data for coarser models. The
process can be iterated by cycling over models at all
scales until they converge. In this way, an online multi-
scale renormalization process might be used to accelerate
and perform simulations that are presently beyond our
capability.
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