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Abstract Three-dimensional convex bodies can be classified in terms of the number
and stability types of critical points on which they can balance at rest on a horizon-
tal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle
points, the numbers of which provide a primary classification. Secondary and tertiary
classifications use graphs to describe orbits connecting these critical points in the
gradient vector field associated with each body. In previous work, it was shown that
these classifications are complete in that no class is empty. Here, we construct 1- and
2-parameter families of convex bodies connecting members of adjacent primary and
secondary classes and show that transitions between them can be realized by codimen-
sion 1 saddle-node and saddle–saddle (heteroclinic) bifurcations in the gradient vector
fields. Our results indicate that all combinatorially possible transitions can be realized
in physical shape evolution processes, e.g., by abrasion of sedimentary particles.
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1 Introduction

1.1 Motivation and Background

The evolution of shapes of abrading bodies, such as pebbles in river beds and on
beaches, has been studied for over 70 years (e.g., Rayleigh 1942, 1944a, b; Firey
1974; Bloore 1977). Data from NASA’s Curiosity Rover on Mars (Williams et al.
2013; Jerolmack 2013) have rekindled interest in the subject. In addition to classical
shape indices such as axis ratios and roundness (Zingg 1935; Illenberger 1991), a
recent approach considers the evolution of the number of static equilibrium points
N (t) on the surface of an abrading body, i.e., points on which the body can balance
at rest on a horizontal plane (Várkonyi and Domokos 2006; Domokos et al. 2010,
2014; Domokos 2015). Unlike shape indices, which require length measurements, the
integer N (t) can be counted in simple experiments (Domokos et al. 2010).

Abrasion occurs primarily on a body’s convex hull, so to formulate a precise and
relatively simplemodel we restrict our analysis to convex bodies K of uniform density,
with surfaces described by scalar Euclidean distance functions rK measured from the
center of mass CK . For such bodies, static equilibria are critical points of rK at which
the gradient ∇rK = 0.

The surface ∂K of a generic convex body K can exhibit three types of non-
degenerate critical points: local minima, maxima, and saddle points, which are sinks,
sources and saddles of the gradient vector field v = ∇rK . Let S,U, H , respectively,
denote the number of each of these points. Since ∂K is a topological 2-sphere, the
Poincaré–Hopf Theorem (Arnold 1998) implies that

S +U − H = 2. (1)

The classification schemes introduced in Várkonyi and Domokos (2006) are based
on these numbers. Specifically, the primary class of a generic convex body K is defined
as the pair of integers {S,U }. In Várkonyi and Domokos (2006), it was shown that
no primary class {i, j} is empty and a hierarchy among these classes was defined
via the Columbus algorithm. Using explicit truncations that remove small portions
from K by slicing along convex surfaces, this algorithm generates a pair of convex
bodies K ′ ∈ {i + 1, j} and K ′′ ∈ {i, j + 1}, as shown in Fig. 1. Thus, starting
from the gömböc {1, 1} (Varkonyi and Domokos 2006), every row and column can be
populated, implying that the primary classification is complete in this ‘static’ sense.

More refined methods exist for classifying the properties of gradient vector fields
v = ∇rK , including graph representations of their Morse–Smale complexes (Dong
et al. 2006). The vertices of these graphs are fixed points of v, and the edges can be
either isolated heteroclinic orbits connecting saddle points, representative non-isolated
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Fig. 1 Primary equilibrium classes. Left examples of convex bodies; rows and columns correspond to the
numbers S and U of sinks and sources, respectively. Right the ‘Columbus algorithm’ of Várkonyi and
Domokos (2006) defines a hierarchy among primary classes. Arrows indicate arbitrarily small truncations
of the convex body, creating one additional sink or source and a saddle point
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Fig. 2 Graph representations of the gradient flow on the triaxial ellipsoid in primary equilibrium class
{2, 2}. a Distance function rK given in spherical polar coordinates. b 3-colored quadrangulated primary
representation Q3(v). c 3-colored triangulated representation T 3(v). d Quasi-dual, 2-colored quadrangu-
lated representation Q2(v). The colors refer to vertices, identifying them as sinks, sources, and (in b, c)
saddles

heteroclinic orbits connecting saddleswith sinks and sources, or both. These are called,
respectively, the primary representation Q3(v), the triangulated representation T 3(v),
and the quasi-dual representation Q2(v); Fig. 2 illustrates these representations for
the triaxial ellipsoid, which will be explained more thoroughly in Sect. 2. For brevity,
we call all three types the topology graphs associated with v. Note that all three
graphs Q3(v), T 3(v), and Q2(v) are embedded on S2 and we will also consider their
abstract, non-embedded versions Q̄3(v), T̄ 3(v), and Q̄2(v).We remark that an abstract
graphmay have several, orientation-preserving non-homeomorphic embeddings in S2.
Precise definitions will be given in Sect. 2, and these graphs will play a key role in the
paper.
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Fig. 3 Secondary and tertiary equilibrium classes. a Secondary and tertiary classes are contained in pri-
mary classes. b Metagraph G with vertices at tertiary classes and edges corresponding to codimension
1 bifurcations; thin edges saddle nodes, thick edges saddle–saddle bifurcations. Note that all illustrated
secondary classes contain one tertiary class, so in the figure the vertices of the metagraph G correspond
simultaneously to secondary and to tertiary classes. c1 Quasi-dual topology graphs Q2(v) of the tertiary
classes labeled a to k in (a, b). c2 illustrations of a through g as convex bodies. c3 Triangulated topology
graphs T 3(v) corresponding to b, d, and g

We call the class of convex bodies with isomorphic abstract graphs the secondary
equilibrium class and the class of convex bodieswith homeomorphic embedded graphs
the tertiary equilibrium class associated with K . See Fig. 3a, which also illustrates
that a primary class can contain different secondary classes: e.g., the ellipsoid is not
alone in class {2, 2}; we note that even though for simplicity we illustrate topology
graphs in this paper as planar maps, we always mean graphs embedded on the sphere
S
2. In Domokos et al. (2016), it was shown that the secondary and tertiary schemes

are also complete in the sense that no secondary or tertiary class is empty.
One can ask whether transitions between different primary, secondary, and tertiary

classes are possible within generic families K (λ) of smooth convex bodies, parame-
terized by λ, as their shapes change. In generic one-parameter families of gradient
vector fields, only two codimension 1 bifurcations occur: saddle nodes and saddle–
saddle connections, and they do so at isolated, critical values λ = λcri (Guckenheimer
and Holmes 1983). Saddle nodes involve local changes in topology in which pairs of
non-degenerate equilibria, either a saddle and a sink or a saddle and a source, emerge
or disappear. Saddle–saddle bifurcations are global bifurcations at which an orbit con-
necting two saddle points exists, but the numbers and types of equilibria do not change.
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(a) (b) (c)
Fig. 4 Topology graphs a and c corresponding to two vertices of G in primary equilibrium class {4, 4} and
the tertiary edge (b) connecting them. Graphs are shown in the triangulated representation of graph class
T 3. Note the saddle–saddle connection on (b), and that a and c are isomorphic as abstract graphs, but not
homeomorphic as embedded graphs on S2

In the former, one of the integers S,U characterizing the primary class of K increases
or decreases by one; in the latter, the primary class remains unchanged.

To visualize these transitions we introduce the metagraph G with vertices rep-
resenting the embedded topology graphs associated with generic gradient fields on
S
2. The metagraph distinguishes primary edges, on which saddle-node bifurcations

occur between vertices in different primary classes, from secondary edges that con-
tain saddle–saddle bifurcations between vertices within the same primary class but in
distinct secondary classes, and tertiary edges between vertices in the same secondary
class. In Fig. 3b, primary and secondary edges are identified by thin and thick lines,
respectively. Figure 3 shows only primary classes with values S+U ≤ 6; here tertiary
edges cannot be illustrated since secondary classes with so few critical points contain
only one tertiary class and therefore have unique embeddings on the 2-sphere. Figure 4
illustrates a tertiary edge connecting two vertices in the primary class {4, 4}.

Our goal, which we will formally define in Sect. 1.2, is to show that not only the
vertices, but also the primary and secondary edges of G can be represented by convex
bodies, i.e., physical processes describing their shape evolution may be represented by
paths on G. It is an intriguing question which of these paths are preferred by physical
abrasion processes. The investigation of this question lies beyond the scope of the
current paper, but we have some physical intuition on how primary classifications of
convex bodiesmight evolve. InDomokos (2015), it is shown that the evolution of S and
U under the partial differential equations governing collisional abrasion processes can
be modeled by letting S and U be random variables whose expected values decrease
with time.While this trend has been verified both in laboratory experiments (Domokos
et al. 2014) and in the field (Miller et al. 2014), almost no pebbles in the primary classes
{1, i}, { j, 1}, (i, j = 1, 2, . . . ) have been found. In Domokos and Lángi (2014), a
purely geometrical reason for this phenomenon was pointed out. The difficulty in
reducing either the number of sinks or sources can be measured by the fraction of
volume that must be removed from a solid, referred to as robustness. In Domokos and
Lángi (2014), it was shown that the robustness of classes {2, i}, { j, 2} is maximal so
it is very unlikely that any natural pebble in these classes will be transformed into any
of the classes {1, i}, { j, 1} by natural abrasion.
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Much less is known about the secondary, let alone tertiary classification of convex
bodies, and theories for their evolution by abrasion are lacking. Nevertheless, as for the
primary case, field data indicate that natural shapes strongly prefer some secondary
classes while other classes remain virtually empty. Already in Hilbert and Cohn-
Vossen (1952), it was observed that coastal pebbles tend to be ellipsoidal. While
Rayleigh (1942, 1944a, b), Bloore (1977) and Firey (1974) ultimately showed that
the classical exact ellipsoid is not an attracting state in collisional abrasion processes,
nearly ellipsoidal shapes nonetheless dominate pebble beaches.Without exception, all
those shapes in primary class {2, 2} for which the secondary classes were determined
have topology graph ‘d’ of Fig. 3c, while the other secondary class ‘c’ in {2, 2} appears
to be missing. Similar observations apply to other primary classes.

As a first step toward understanding these phenomena, we show that the secondary
classification scheme of Domokos et al. (2016) is also complete in the following
‘dynamical’ sense. Primary and secondary edges in the metagraph G, containing codi-
mension 1 saddle node and saddle–saddle bifurcations, respectively, exist in the space
of gradient vector fields v = ∇rK on the 2-sphere associated with convex bodies
K . In the next subsection, we use the metagraph G to formulate our statements and
relate them to earlier results. Before doing so, we note that the gradient vector field
v = ∇rK cannot describe the Newtonian dynamics of the body K rocking on a hori-
zontal plane, which would require a system of second-order differential equations, but
that the stability types of its fixed points correctly reflect those of the equilibria of K .

1.2 Definitions and Main Result

We first define the metagraph G, whose vertices are embedded topology graphs rep-
resenting tertiary equilibrium classes associated with the Morse–Smale complexes
(Milnor 1963) of gradient vector fields of convex bodies. For simplicity, we use the
primary representation Q3(v), but the triangulated or quasi-dual representations may
also be used to construct G. The edges of G correspond to codimension 1 bifurcations
connecting these classes, and all possible one-parameter families of gradient vector
fields on the 2-sphere appear in G. We define the edges and vertices of G, and we will
use these concepts to formulate our results and relate them to earlier results.

Definition 1 Two vector fields v and w on the 2-sphere are topologically equivalent
(Sotomayor 1968; Guckenheimer and Holmes 1983) if there is an orientation-
preserving homeomorphism of the sphere S2 that maps the topology graph of v into the
topology graph of w for any of the types Q3, T 3, and Q2. We note that the existence
of such homeomorphism for any of the three representations implies the existence of
such a homeomorphism for each of the types.

As noted earlier, in case of generic vector fields (Sotomayor 1968), topology graphs
can be defined by the Morse–Smale complex associated with the vector field (Dong
et al. 2006). Now we proceed to define the metagraph G.

Definition 2 A vertex of G is an embedded topology graph Q3(v) on S
2, associated

with the Morse–Smale complex of a generic gradient vector field v on S2.
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Definition 3 The primary class of a vertex Q3(v) is the pair of integers {S,U }, where
S andU denote the number of sinks and saddles of v. The secondary and tertiary class
of a vertex are the abstract graph Q̄3(v) and the embedded graph Q3(v), respectively,
both associated with the Morse–Smale complex of v.

Definition 4 An edge of G is a one-parameter family v(λ), λ ∈ [0, 1] of gradient
vector fields connecting two distinct vertices Q3(v(0)) and Q3(v(1)) of G. We require
that v is generic except for a unique value λ = λ� ∈ (0, 1), for which v(λ�) exhibits
a codimension 1 bifurcation (Guckenheimer and Holmes 1983).

Definition 5 We call an edge v(λ), λ ∈ [0, 1] primary if the primary classes of
Q3(v(0)) and Q3(v(1)) are different. We call an edge v(λ), λ ∈ [0, 1] secondary if
the primary class of Q3(v(0)) and Q3(v(1)) are identical, but their secondary classes
are different. We call an edge v(λ), λ ∈ [0, 1] tertiary if both the primary and the
secondary class of Q3(v(0)) and Q3(v(1)) are identical.

Definition 6 We call a vertex Q3(v) of G physical if there exists a convex body K
such that ∇rK is topologically equivalent to v.

Definition 7 We call a primary, secondary or tertiary equilibrium class physical if it
contains at least one physical vertex.

Definition 8 We call an edge v(λ), λ ∈ [0, 1] of G physical if there exists a one-
parameter family K (λ), λ ∈ [0, 1] of convex bodies such that∇rK (λ) is topologically
equivalent to v(λ) for all values of λ ∈ [0, 1].

Now we can formulate earlier and current results. Regarding primary equilibrium
classes, we have

Theorem 1 All primary classes are physical.

This result, proved in Várkonyi and Domokos (2006), was generalized in Domokos
et al. (2016) to include secondary and tertiary classes:

Theorem 2 All vertices of G are physical.

In the current paper, our goal is to further extend Theorems 1 and 2 by proving the
physical existence of an important subset of edges of G:

Theorem 3 All primary and secondary edges of G are physical.

1.3 Summary of Proof

As noted above, the local truncations constructed in Domokos et al. (2016) modify
the Morse–Smale complex of K to produce one-parameter families of convex bodies
in which either S or U is increased by 1. However, these families do not (necessar-
ily) represent edges in the metagraph G since the genericity of the bifurcation was
not guaranteed by the construction in Domokos et al. (2016). One-parameter fam-
ilies connecting vertices at the ends of secondary edges (saddle–saddle connection
bifurcations) were not even discussed in Domokos et al. (2016).
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Here, we extend these results by constructing a 2-parameter family of convex bod-
ies whose gradient vector fields are generic in the sense that certain codimension 1
subsets (curves) in the parameter plane correspond to vector fields with codimension
1 local saddle-node and global saddle–saddle bifurcations, forming primary and sec-
ondary edges of G. We also show that the codimension 1 bifurcation curves meet in a
codimension 2 saddle to saddle-node bifurcation point.

Because secondary edges correspond to codimension 1 global saddle–saddle bifur-
cations, the local methods of Domokos et al. (2016) do not apply directly. Rather, we
achieve our goal in two steps. In Sect. 2, we prove Combinatorial Lemma 1, stating that
any secondary edge of the metagraph G bounds a triangular face of G of which the two
other edges are primary. As shown in Fig. 9 below, the vertices of such a face represent
three topology graphs that lie in adjacent primary classes of G. The triangles (b,c,d)
and (f,j,k) in Fig. 3b above provide examples. We then appeal to dynamical systems
theory (Guckenheimer and Holmes 1983) in Sect. 3 to show that such a triangular
face could contain a codimension 2 bifurcation point for the gradient flow v = ∇rK (λ)

and describe how codimension 1 saddle-node and saddle–saddle bifurcations emanate
from this point.

In Sect. 4, we take the second step, providing an explicit geometrical construction
that realizes the codimension 2 bifurcation via an arbitrarily small truncation of K
depending on two parameters. First, in Sect. 4.1 we prove that a truncation exists
under the assumption that the resulting displacement of the body’s mass center has no
effect on the topology of its gradient flow. Then, in Sect. 4.2 we construct a simultane-
ous, auxiliary truncation such that the mass center remains fixed under the combined
truncations, implying that the topology of the flow is preserved. Finally, in Sect. 5 we
summarize our results and point out some possible consequences.

2 Combinatorial Part

Before stating the combinatorial lemma, we define three classes of graphs associated
with Morse–Smale complexes on the 2-sphere, of which the graph representations
introduced above and illustrated in Fig. 2b–d are examples. As in Domokos et al.
(2016), we denote by a quadrangulation a finite planar undirected multigraph on the
2-sphere in which each face is bounded by a closed walk of length 4 (cf. Archdeacon
et al. 2001; Brinkmann et al. 2005). A multigraph contains no loops but may have
multiple (parallel) edges, and it is usually permitted that the boundary of a face may
contain a vertex or an edge of the graphmore than once (e.g., see some of the faceswith
saddle–source and source–sink connections in Fig. 5a, c, respectively). In addition,
we follow (Archdeacon et al. 2001) and regard the path graphs (cf. Gross and Yellen
2006) P2 and P3 as quadrangulations, where Pk denotes a tree on k vertices, each with
degree at most 2.

Dong et al. (2006) introduced three different kinds of graph to represent a Morse–
Smale complex on the 2-sphere, as follows:

• Q2 is the class of 2-vertex-colored quadrangulations. Note that as no quadrangula-
tion contains odd cycles, each is 2-colorable (cf. Archdeacon et al. 2001;Nakamoto
1999). Furthermore, the coloring of the graph is unique up to switching the colors.
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stable point

unstable point

saddle point

(a) (b) (c)
Fig. 5 Different representations of a part of a Morse–Smale complex. a Primary topology graph in class
Q3. b Triangulated topology graph in class T 3. c Quasi-dual topology graph in class Q2

• Q3 is the class of 3-vertex-colored quadrangulations with deg(p) = 4 for any
p ∈ H , and |S| + |U | − |H| = 2, where S, U , and H denote the sets of vertices
of each given color.

• T 3 is the class of 3-vertex-colored triangulations with deg(p) = 4 for any p ∈ H,
and |S| + |U | − |H| = 2, where S, U , and H denote the sets of vertices of each
given color.

Examples of each class appear in Fig. 5c, a, b, respectively.
It was shown in Edelsbrunner et al. (2003) (cf. Zomorodian 2005) that a Morse–

Smale complex on the 2-sphere can be uniquely represented by a 3-vertex-colored
quadrangulation inQ3, where the vertex colors represent the 3 types of critical points
(maxima,minima, and saddles) and edges correspond to stable and unstablemanifolds:
isolated integral curves that end and start at saddle points. Each quadrangle is bounded
by a closed walk consisting of a source, a saddle, a sink and a saddle in cyclic order
around the face, and every saddle has degree 4; see Fig. 5a. Following Dong et al.
(2006), we call this the primary topology graph.

Saddle points can be removed from the primary graph without losing information
(Dong et al. 2006): first we connect sources and sinks inside each quadrangle, produc-
ing a triangulated topology graph in class T 3; we then remove all saddle points and
edges incident to them, as in Fig. 5b, c. Since non-degenerate saddles have degree 4,
the resulting graph is a 2-vertex-colored quadrangulation in class Q2: the quasi-dual
topology graph (cf. Dong et al. 2006). Here, we use the latter; however, in Sect. 4, the
primary graph representation is preferable. All three representations are equivalent in
the sense that they are mutually uniquely identified.

Let F = (p1, p2, p3, p4) be a face of any Q ∈ Q2 (cf. Fig. 6a1, left). Pairs of
vertices, and/or edges connecting them, may coincide. Nonetheless, a quasi-dual rep-
resentation admits only two kinds of coincidences: two diagonally opposite vertices,
say p2 and p4 may coincide, and in this case two consecutive edges, say (p4, p1) and
(p1, p2) may coincide: these two cases are illustrated in Fig. 6b1, c1, left. Note that
in Fig. 6c1 the internal domain bordered by the edges (p4, p1) and (p1, p2) is not a
quadrangular face and necessarily contains at least one additional vertex, as indicated
by the triangles in the inner region. Figure 6d1 shows the remaining two exceptional
cases: the trees Q = P3 and Q = P2.

The algorithm in Domokos et al. (2016) is based on repeated application of a
combinatorial graph operation called face contraction (cf. Archdeacon et al. 2001;
Brinkmann et al. 2005 or Negami and Nakamoto 1993). Applied to the face F defined
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)
Fig. 6 a1–d1 Face contractions on the subgraph of a graph in class Q2. As in Brinkmann et al. (2005),
triangles incident to some vertices indicate that one or more edges may occur at that position around the
vertex. Here p1 and p3 are sinks; analogous face contractions, each removing a source from the graph, can
be performed by switching the colors. a2–d2 The corresponding face contractions in class T 3

in the previous paragraph, this operation results in the contraction of the vertices p1
and p3 into the same vertex, and the disappearance of F ; the modified graphs depend-
ing on the ‘shape’ of the original face F are shown on the right of each panel in Fig. 6.
The inverse operation of face contractions is called vertex splitting. Combinatorially,
for graphs with at least three vertices it can be defined as follows. Let p be a ver-
tex of the quadrangulation Q, with adjacent edges E1, E2, . . . , Ek, Ek+1 = E1 in
counterclockwise order, and note that the other endpoints of some of these edges may
coincide. Choose two, not necessarily distinct edges: Ex and Ey . Then, we split p
into two vertices p1 and p3, and Ex and Ey into two pairs of edges Ex,1 and Ex,3,
and Ey,1 and Ey,3, such that Ex,1, Ex+1, . . . , Ey−1, Ey,1 are connected to p1, and
Ey,3, Ey+1, . . . , Ex−1 and Ex,3 are connected to p3. This operation can be naturally
modified for primary and triangulated representations: in the primary representation,
instead of two edges we choose two (not necessarily distinct) faces, whereas in a
triangulated representation we choose two edges connecting a sink and a source.

In a quasi-dual graph, a transition via a saddle–saddle connection can be realized as
a diagonal slide (Negami and Nakamoto 1993), defined as follows: consider two faces
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Fig. 7 The connection between diagonal slides and twin vertex splittings for subgraphs of T 3-class graphs.
Row (a) the non-degenerate case. Row (b) the degenerate case when u1 = u2, labeled by u. Row (c) the
degenerate case when u1 = u2 = u and s1 = s2 = s. The subgraphs in row (c), columns B andC belong to
isomorphic graphs, and thus have no common ancestor, hence no subgraph appears in column A of row (c)

(s1, u3, s2, u2) and (u1, s3, u2, s2) of the quadrangulation sharing an edge (s2, u2),
and replace this edge by either (s1, u1) or (s3, u3), say (s3, u3). Then, the two faces
(s1, u3, s2, u2) and (u1, s3, u2, s2) are replaced by (s1, u3, s3, u2) and (u1, s3, u3, s2).
To formulate the lemma, we need the following definition.

Definition 9 Let Q ∈ Q2 be a quadrangulation. Two vertex splittings W and W ′ of
Q are called twin, if:

• The same vertex p is split.
• Let A1 and A2 denote the sets of edges connected to the two split vertices in W ,
and define A′

1 and A′
2 similarly for W ′. Then, A1 differs in exactly one element

from A′
1 or A

′
2.

In this case, Q is called the ancestor of the two split graphs. This definition can also
be naturally interpreted for primary and triangulated representations.

Note that the second property in Definition 9 implies that A2 also differs in exactly
one element from A′

1 or A′
2. The graphs in columns B and C of rows (a) and (b) in

Fig. 7 can be obtained from the graph in column A of the same row via twin vertex
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splittings, but the graphs in columns B and C of Fig. 7c are isomorphic and hence
have no ancestor graph. This corresponds to the degenerate case 3 in the Proof of the
Combinatorial Lemma 1 below.

Lemma 1 (Combinatorial Lemma) Let B,C ∈ Q2 be embeddings of two non-
isomorphic abstract graphs B̄, C̄ in S

2, respectively, such that there is a diagonal
slide that transforms B into C. Then there is an embedding A ∈ Q2 and a pair of
twin vertex splittings WB and WC of Ā such that WB transforms A into B, and WC

transforms A into C.

We remark that, as we will see in the proof of Lemma 1, there are diagonal slides
between non-homeomorphic drawings of the samegraphwhich cannot be derived from
the same ancestor via twin vertex splittings. Note also the essential condition that the
abstract graphs B̄, C̄ should be non-isomorphic; this condition excludes tertiary edges
from our argument.

Proof To simplify the proof, we use the triangulated variants of B and C , which
with a little abuse of notation, we also denote by B and C . Let the two saddles that
are connected by the saddle–saddle bifurcation be denoted by h1 and h2. This edge
belongs to two faces of B, say (s2, u1, h1) and (s2, u1, h2), and similarly, two faces of
C , say (s1, u2, h1) and (s1, u2, h2). We note that, due to the degeneracy of the graph,
some of the vertices or edges may coincide; nevertheless, due to the saddle–saddle
connection, h1 and h2 are distinct.

Case 1 s1 and s2, and also u1 and u2 are distinct. Figure 7 row (a) shows the
corresponding faces of B, the saddle–saddle bifurcation, C , and the common ancestor
A from left to right. Face contractions are carried out by collapsing the edges (s1, h1)
and (s2, h1) into a single vertex s, and the dotted edges starting at s1, h1 and s2 are
contracted into the single dotted edge of A. Furthermore, the edges (s2, u1), (h1, u1),
and (s1, u1) are contracted to (s, u1) in B, whereas (s2, u2), (h1, u2) and (s1, u2) are
contracted to (s, u2) in C . Since (s, u1) and (s, u2) are consecutive edges of A in the
quasi-dual representation, the vertex splittings belonging to the two face contractions
are indeed twin. We remark that in Case 1 (row a) another ancestor can be found by
contracting (u1, h2) and (u2, h2).

Case 2 exactly one of the pairs {s1, s2} or {u1, u2} coincide. Without loss of gen-
erality, we may assume that u1 = u2 = u and s1 �= s2. Note that as the degree of
a saddle point is 4, in this case there are two edges starting at h2 and ending at u.
Figure 7 row (b) shows the corresponding faces of B, the saddle–saddle bifurcation,
C , and the common ancestor A from left to right. Face contraction is carried out by
collapsing the edges (s1, h1) and (s2, h1) into a single vertex s.

Case 3 s1 = s2 = s, and u1 = u2 = u. In this case, B andC are isomorphic graphs:
Fig. 7 row (c). We note that in this case the two edges starting at s and ending at u
may also coincide. ��

3 Dynamical Part

In this section, we describe how codimension 1 saddle-node and saddle–saddle bifur-
cations canmeet in a codimension 2 bifurcation of a gradient vector field v on S2. Such
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a bifurcation point can be associated with each triangular face of the metagraph G hav-
ing two primary edges and one secondary edge. We construct an explicit polynomial
function Vμ1,μ2(x, y), depending on two parametersμ1, μ2, that captures the behavior
of v near a degenerate saddle nodewhose strong stablemanifold contains one branch of
the unstable manifold of a non-degenerate (hyperbolic) saddle point. The parameters
μ1, μ2 provide local coordinates on the face of the metagraph near the codimension 2
point. Since the saddle–saddle or heteroclinic connection is a global phenomenon, our
vector field will necessarily be non-local, but we can nonetheless find a cubic potential
function that captures the local saddle-node and the global heteroclinic connection. A
homoclinic orbit to a saddle-node bifurcation point was previously shown to occur in
the averaged equations for the periodically forced van der Pol oscillator (Holmes and
Rand 1978), cf. (Guckenheimer and Holmes 1983, Sect. 2.1, Figs. 2.1.2-3).

We first recall the normal form of an isolated codimension 1 saddle node in a
gradient vector field on the plane, which can be described by a potential function
depending on one parameter (Guckenheimer and Holmes 1983):

Vμ1(x, y) = x3

3
+ y2

2
− μ1x, (2)

The corresponding vector field

ẋ = −∂Vμ1

∂x
= −x2 + μ1,

ẏ = −∂Vμ1

∂y
= −y, (3)

has no fixed points for μ1 < 0, a saddle node at (x, y) = (0, 0) for μ1 = 0, and a
hyperbolic saddle and a sink at (x, y) = (−√

μ1, 0) and (+√
μ1, 0), respectively, for

μ1 > 0.
We now add further cubic terms and a linear term containing another parameter

μ2 to Vμ1 to produce a second hyperbolic saddle that can be displaced relative to the
saddle and sink described above. We set

Vμ1,μ2,α(x, y) = x3

3
+ y2

2
+ y3

3
− αx2y − μ1x − μ2xy, with α ≥ (1/4)1/3, (4)

so that the vector field (3) becomes

ẋ = −x2 + 2αxy + μ1 + μ2y,

ẏ = αx2 − y − y2 + μ2x . (5)

Elementary calculations and linearization at the fixed points show that, for μ1 =
μ2 = 0, the saddle node remains at (0, 0) and a hyperbolic saddle lies at (0,−1).
Moreover, the y-axis is an invariant line, because ẋ ≡ 0 for any solution with initial
condition (0, y0). The unstable manifold of the saddle (0,−1) is the line segment
{x = 0|y ∈ (−∞, 0)}, the upper part of which coincides with the lower part of the
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(a) (b)

(d) (e)

(c)

(f)

(g) (h) (i)

Fig. 8 Bifurcations of the gradient vector field (5). a The bifurcation set in (μ1, μ2)-space near the
codimension 2 point (0, 0): saddle nodes occur on the curve μ1 = f1(μ2; α) �= 0; saddle–saddle connec-

tions exist on the curve μ1 = f2(μ2; α) =
{
μ2
2/4α

2|μ2 ∈ (0,
√

α)
}
. b At μ1 = μ2 = 0 the unstable

manifold of the saddle at (0, −1) lies in the strong stable manifold of the saddle node at (0, 0). c For
μ1 > max{ f1(μ2; α), f2(μ2; α)} two unconnected hyperbolic saddles coexist with a sink. d Along
μ1 = f2(μ2; α) < α2 with μ2 > 0 a codimension 1 saddle–saddle connection exists on the invari-
ant line x = −√

μ1. e For f1(μ2;α) < μ1 < f2(μ2;α) and μ2 > 0 two hyperbolic saddles and a sink
exist with the lower saddle’s unstable manifold passing left of the upper saddle’s stable manifold. f On
μ1 = f1(μ2; α) < 0 with μ2 > 0 a codimension 1 saddle node occurs with the lower saddle’s unstable
manifold passing to its left. g For μ1 < f1(μ2; α) only the lower saddle exists. h On μ1 = f1(μ2; α) < 0
with μ2 < 0 a codimension 1 saddle node occurs with the lower saddle’s unstable manifold entering from
its right. i Along μ1 = f2(μ2; α) with μ2 < 0 the lower saddle’s unstable manifold lies on the invariant
line x = +√

μ1 and intersects the strong stable manifold of the sink; this is not a bifurcation point

strong stable manifold {x = 0|y ∈ (−1,+∞)} of the saddle node. A disk containing
these two fixed points constitutes a chart, containing the codimension 2 degenerate
vector field that can be mapped onto an open set of S2: see Fig. 8b. The term −αx2y
is necessary to make the lower saddle hyperbolic (its eigenvalues are −2α and +1).
A second hyperbolic saddle lies at (2α/(4α3 − 1), 1/(4α3 − 1), but this fixed point
is irrelevant to the bifurcations of interest, and it can be driven out of any compact

region by letting α → (1/4)1/3
def=α∗ ≈ 0.62996. For the cases shown in Fig. 8b–j we

set α = 0.62996.
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We now describe the codimension 1 bifurcations and structurally stable vector
fields that emerge from the codimension 2 bifurcation point for small μ1, μ2. Setting
ẋ = ẏ = 0 in (5), and noting that y = (x2 − μ1)/(2αx + μ2) from the first equation,
we may eliminate y from the second equation to obtain the fixed point condition

Fμ1,μ2,α(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0, (6)

where

a4 = 4α3 − 1, a3 = 2α(4αμ2 − 1), a2 = 2μ1 + 5αμ2
2 − μ2,

a1 = 2αμ1 + μ3
2 and a0 = μ1μ2 − μ2

1. (7)

Forμ1 = μ2 = 0 Eqn. (6) becomes ((4α3−1)x−2α)x3 = 0, with a triply degenerate
root at x = 0 and the irrelevant root at x = 2α/(4α3 − 1). Setting α = α∗ so that the
latter root lies at ∞, the quartic polynomial becomes a cubic with discriminant

� = 18a0a1a2a3 − 4a0a
3
2 + a21a

2
2 − 4a31a3 − 27a20a

2
3 . (8)

To obtain an explicit approximation for the saddle-node bifurcation curve μ1 =
f1(μ2;α∗), we consider this special case. Substituting the expressions (7) into (8)
and setting � = 0 yields a polynomial relating μ1 and μ2 for which Fμ1,μ2,α∗(x0) =
F ′

μ1,μ2,α∗(x0) = 0 and one of relevant roots x0 is multiple. Except for μ1 = μ2 = 0,
for which x0 = 0 and F ′′

μ1,μ2,α∗(0) = 0, this is a double root, and it corresponds either
to a saddle-node bifurcation, or to the heteroclinic saddle–saddle connection discussed
below.Expandingμ1 in integer powers ofμ2 and using the fact thata3 = −2α+O(μ2)

to determine the leading terms, we find the following expression for the saddle-node
bifurcation:

μ1 = f1(μ2;α∗) = −μ4
2

4
− 3 × 21/3μ5

2

8
− 5 × 22/3μ6

2

8
+ O

(
μ7
2

)
. (9)

As in Eqn. (3), μ1 primarily controls the saddle-node bifurcation, but the second
parameter μ2 shifts the relative x positions of the upper and lower saddles, allowing
a codimension 1 heteroclinic connection to form with μ1 �= 0. Specifically, along the
curve

μ1 = f2(μ2;α) = μ2
2

4α2 , with μ2 ∈ (0,
√

α), (10)

both saddle points lie on the invariant line x = −√
μ1 and a connecting orbit from

the lower to the upper saddle exists (their y coordinates are 1
2

[
−1 ∓

√
1 − μ2

2/α

]
,

respectively). This bifurcation curve is shown in Fig. 8a for α = α∗, together with the
saddle-node curve μ1 = f1(μ2;α∗) (the latter’s curvature is exaggerated for clarity).
Note that the discriminant � = 0 for μ1 = μ2

2/4α
∗2 since both saddles have the

same x-coordinate. A similar invariant line x = +√
μ1 connects the lower saddle
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Fig. 9 A codimension 2 bifurcation on a triangular face of the metagraph G. For better comparison with
other figures, all topology graphs are shown in the triangulated T 3 representation, however, observe that
in the proof we use the primary Q3 representation of the same graphs. The generic graphs A, B,C can
be regarded as subgraphs of a topology graph. For example, by adding one stable point, they are identical
to triangulated representations of the graphs (f, j, k) in Fig. 3. The degenerate graphs AB, AC , containing
codimension 1 saddle-node bifurcations SN, correspond to primary edges f j , f k ofG. The degenerate graph
BC containing a codimension 1 saddle–saddle connection H2-H3 corresponds to the secondary edge jk of
the metagraph. Finally, the degenerate graph ABC , containing the codimension 2 bifurcation, corresponds
to the triangular face f jk of the metagraph G

to the strong stable manifold of the sink for μ1 = μ2
2/4α

2 with μ2 < 0, but since
saddle–sink connections are structurally stable, no bifurcation occurs here (Fig. 8j).

In addition to the degenerate codimension 2 vector field at (μ1, μ2) = (0, 0)
shown in panel (b), panels (c–h) show representative vector fields on the codimension
1 bifurcation curves and structurally stable vector fields in the three open regions in
the bifurcation set of panel (a). For the unfolding parameters used here, the saddle-
node and saddle–saddle connection bifurcation curves meet in a quadratic tangency
at (μ1, μ2) = (0, 0). The geometrical parameters (d, φ) chosen in the construction
that follows produce bifurcation curves that meet transversely at (0, 0), as shown in
Fig. 9.

4 Geometrical Part

In this section, we prove Theorem 3. To do this, it suffices to create for any primary
or secondary edge E = {v1, v2} of the metagraph G a suitable, one-parameter family
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K (λ) of convex bodies, whereλ ∈ [λ1, λ2], with a unique valueλ� ∈ (λ1, λ2) such that
the graph of K (λ) is homeomorphic to v1 for any λ ∈ [λ1, λ�), homeomorphic to v2
for any λ ∈ (λ�, λ2], and homeomorphic to the graph of the codimension-1 bifurcation
defined by E = {v1, v2} at λ = λ�. In this case we can choose a re-parameterization
of this family that will satisfy the topological equivalence condition of the theorem.
For simplicity, when in the proof we write about homeomorphic topology graphs, we
mean that there is an orientation-preserving homeomorphismmapping one embedding
into the other one.

We prove the assertion only for secondary edges of G, because for primary edges
we may apply a simpler version of the same argument. As noted before, our argument
does not apply to tertiary edges. Secondary edges correspond to non-local bifurcations,
so it is hard to construct by local truncations a suitable one-parameter family of convex
bodies that corresponds to any given secondary edge. To ensure that local truncations
suffice, we rely on Lemma 1, stating that any secondary edge belongs to a triangular
face of G of which the two other edges are primary. Since the latter correspond to local
saddle-node bifurcations, we can use local truncations. We will show that any face of
G spanned by two primary edges and one secondary edge can be realized by a suitable
2-parameter family K (d, φ) of convex bodies (cf. Definition 10). Such a family has
(among others) the property that it collapses to family described above if we restrict
to any of the three edges of G, so the existence of this suitable 2-parameter family
proves the Theorem.

Let B and C be the primary graph representations of two gradient vector fields that
are connected via any given saddle–saddle bifurcation. Furthermore, let A be their
common ancestor, that is, B and C can be derived from A by twin vertex splittings.
By Lemma 1, such a graph exists and from Domokos et al. (2016) we know that each
of the three graphs A, B,C can be associated with the gradient vector fields of the
smooth, convex bodies KA, KB, KC , respectively. We denote the degenerate graphs
belonging to the corresponding transitions by AB, AC , BC , and ABC , respectively.
See Fig. 9.

Definition 10 A 2-parameter family K (d, φ) of convex bodies, where d ∈ [0, dBC ]
and φ ∈ [φB, φC ] is called suitable if the function (d, φ) �→ K (d, φ) is continuous
with respect to Hausdorff distance, and there is a value dA ∈ (0, dBC ) and a function
φBC : [dA, dBC ] ∈ (φB, φC ) such that the following holds:

(10.1) for every φ ∈ [φB, φC ], K (0, φ) = KA,
(10.2) for every φ ∈ [φB, φC ] and d < dA, the graph of K (d, φ) is homeomorphic

to A,
(10.3) for every d > dA and φ < φBC (d), the graph of K (d, φ) is homeomorphic to

B,
(10.4) for every d > dA and φ > φBC (d), the graph of K (d, φ) is homeomorphic to

C ,
(10.5) for every φ < φBC (dA), the graph of K (dA, φ) is homeomorphic to AB,
(10.6) for every φ > φBC (dA), the graph of K (dA, φ) is homeomorphic to AC ,
(10.7) for every d > dA, the graph of K (d, φBC (d)) is homeomorphic to BC ,
(10.8) the graph of K (dA, φBC (dA)) is homeomorphic to ABC .
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We note that in Definition 10, each topology graph is taken with respect to the
center of mass of K (d, φ), which depends on the values of d and φ. Nevertheless, if
the same properties hold with the center of mass of KA as a fixed reference point, we
say that K (d, φ) is weakly suitable.

This definition is illustrated in Fig. 9. We remark that, in the context of Sect. 3, the
line {d = dA|φ ∈ [φB, φC ]} and the curve {φ = φBC (d)|d ∈ [dA, dBC ]} form the
bifurcation set associated with the gradient vector field.

We prove the assertion in two steps: in the first step (Sect. 4.1), we construct a
weakly suitable family. In the second step (Sect. 4.2), we modify the construction in
such a way that the center of mass of every member of the family coincides with that
of KA, showing that the previously constructed family is not only weakly suitable but
can be made suitable.

4.1 Neglecting the Motion of the Center of Mass

In the first step of the proof, we assume that the graph of every convex body is taken
with respect to the center of mass of KA, i.e., we assume that the displacement of
the center of mass does not influence the topology of the flow. For brevity, we set
K = KA, and we consider only the case that the equilibrium point of K to be split is
stable; if it is unstable, a similar argument with an arbitrarily small, conical extension
of the surface can be applied.

Let s denote this stable point and the descendant points in the graphs B and C ,
obtained by splitting s, be s′

B, s′′
B, s′

C , s′′
C , respectively. Appealing to Lemma 5 of

Domokos et al. (2016), we may assume that a neighborhood of s in ∂K belongs to a
sphere S. Without loss of generality, let the origin o be the center of this sphere, where
the radius of S is assumed to be one. Furthermore, let c denote the center of mass of K ,
and note that, because s is a stable point, c is contained in the interior of the segment
[o, s] (cf. Fig. 10b).

Let �i , where i = 1, 2, . . . ,m denote the edges of A starting at s, in counterclock-
wise order around s, from outside K . Clearly, for each value of i , the part of �i in
S is a great circle arc. These edges are labeled in such a way that the edges of B
starting at s′

B correspond to the �i ’s with i = 1, 2, . . . , k (and those starting at s′′
B

correspond to the remaining edges), and the edges starting at s′
C correspond to the

�i s with i = 1, 2, . . . , k + 1 (and those starting at s′′
C correspond to the remaining

ones). Observe that, measured in counterclockwise order, either the angle from �1 to
�k+1, or the angle from �k+1 to �m is less than π . Without loss of generality, we may
assume that the angle from �1 to �k+1 is less than π .

First, we truncate the spherical neighborhood of s by a plane P sufficiently close to
but outside s, and investigate the equilibrium points of the truncated body with respect
to c. In the generic case, we have two possibilities for the graph of the truncated body
KP . If K ∩ P does not contain a new stable point, then the graph of KP remains
homeomorphic to A. Furthermore, if K ∩ P does contain a new stable point s′′, then a
new saddle point is created on P ∩ ∂K , and every heteroclinic orbit on K intersecting
P ends up at s (cf. Fig. 10a), whereas those not intersecting it remain the same. Finally,
note also that K ∩ P contains a stable point if, and only if, the orthogonal projection
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(a) (b)

Fig. 10 a Truncation by the plane P(dBC , θ, φ) to create a body with graph B containing a new saddle
on P ∩ ∂K and a sink s′′. b An illustration for Lemma 3. The sinks s and s′′ (filled circles) and the saddle
(circle with cross) of (a) are identified

of c onto P is contained in the interior of K ∩ P . (If the projection is contained on
the boundary of this circle, it is a degenerate case corresponding to a saddle-node
bifurcation.) We will find a 2-parameter family of planes such that, if the intersection
circle contains the projection of o on any member, then the edges meeting the circle
are either �1, . . . , �k , or �1, . . . , �k+1: see Fig. 10a.

An arbitrary plane in 3-space, and thus, in particular, the truncating plane, can be
defined with three parameters. For this purpose, we use the following coordinates:

(i) d: the depth of the cut (i.e., the height of the truncated spherical cap), measured
from the point of the sphere where the tangent plane is parallel to the cutting
plane;

(ii) θ : the arc distance � (s, o, cp) of the center cP of the intersection circle (the one
created by the cutting plane on the sphere), from s, measured on S;

(iii) φ: the angle of the great circle arc between cP and s, and from some fixed great
circle arc starting at s.

Up to a linear transformation, these parameters correspond to the polar coordinates
of the vector pointing from the origin o to its orthogonal projection onto the truncating
plane P , where theNorth Pole of S is s. Henceforth, we denote the plane by P(d, θ, φ).

Observe that, measured in counterclockwise order, we have � (�1, �k) <
� (�1, �k+1) < � (�0, �k+1) < � (�0, �k+2). Choose (cf. Fig. 10a) some angle
0 < α < π satisfying

� (�1, �k+1) < α < � (�0, �k+1). (11)

Furthermore, for any sufficiently small, fixed value θ > 0, there is a value dBC =
dBC (θ, α) independent of φ such that for any plane P with parameters P(dBC , θ, φ),
α is the angle between the two great circle arcs on the sphere, starting at s and touching
the intersection circle. Hence, by (11), there are some φB < φBC < φC , with φB and

123



1808 J Nonlinear Sci (2016) 26:1789–1815

φC depending only on α, and φBC = φBC (d) depending on α and d, such that

• for any φ ∈ [φB, φBC (d)) the plane P(dBC , θ, φ) intersects �i

if and only if i = 1, 2, . . . , k;
• the plane P(dBC , θ, φBC (d)) intersects �i if and only if i = 1, 2, . . . , k,

and it is tangent to �k+1;
• for any φ ∈ (φBC (d), φC ] the plane P(dBC , θ, φ) intersects �i if and only if

i = 1, 2, . . . , k + 1 (cf. Fig. 10a)). (12)

Now, consider the one-parameter family P(dBC , θ, φ), with θ fixed and depending
only on φ ∈ [φB, φC ]. If, for any value of φ in this interval, the projection of c lies on
K ∩ P(dBC , θ, φ), then, depending on the value of φ, the graph of the body truncated
by the plane is homeomorphic to either B or C , or in the degenerate case to BC (cf.
Fig. 10a). Since we intend to use local truncations only, we would like to guarantee
this property for any sufficiently small value of θ > 0. Before proceeding further, we
recall two lemmas from Domokos et al. (2016).

Lemma 2 Let r > |s−c| and δ > 0 be arbitrary. Then there is a convex body K ′ ⊆ K
satisfying the following:

(i) The graph of K ′ is homeomorphic to A.
(ii) Denoting the critical point of K ′ corresponding to s by s′, s′ has a spherical cap

neighborhood in ∂K ′, of radius arbitrarily close to r .
(iii) Denoting the integral curve of K ′ corresponding to �i by �′

i for every i , and by
ti and t ′i the unit tangent vectors of �i and �′

i at s
′, respectively, we have that

|t ′i − ti | < δ.

We note that the same statement is proven in Domokos et al. (2016) for the case
that s is an unstable point, and the radius of its spherical neighborhood is arbitrarily
close to any given value 0 < r < |s − c|.
Lemma 3 Let C be the unit circle in the plane R2 with the origin o as its center, and
let c = (0, τ ), where τ > 0. Let q1 = (μ1, ν1) and q2 = (μ2, ν2) be two points of C
such that v1 > 0.

(i) If [q1, q2] is perpendicular to [s, q1], then lim
μ1→0

μ2
μ1

= 2τ
1−τ

.

(ii) If the angle between [q1, q2] and [c, q1] is π
2 − C ′μ1 for some constant C ′

independent of μ1, then lim
μ1→0

μ2
μ1

= 2τ
1−τ

+ 2C ′.

Now, consider a plane P = P(dBC , θ, φ)with an arbitrary value of φ (cf. Fig. 10a),
and let the closest and the farthest points of the circle C̄ = P ∩ ∂K from the segment
[o, s] be denoted by q2 and q1, respectively. For convenience, we imagine, for the
moment, the plane containing q1 = (μ1, ν1), q2 = (μ2, ν2), and c = (0, τ ) as R2 in
Lemma 3: Fig. 10b.

For any sufficiently small θ > 0, we require that the orthogonal projection of c
on P lie in the interior of the segment [q1, q2]. Since � (q1, q2, c) < π

2 , this property
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holds if and only if � (q2, q1, c) < π
2 for any sufficiently small θ > 0. Recall that

dBC is defined by the fact that the angle between the two tangent lines of C̄ , passing
through p, is equal to α. Let C̄s , qs1, and qs2 denote the central projections of C̄ , q1,
and q2, respectively, onto the tangent plane of K at s. Then, as θ → 0, the limit of the
angle between the two tangent lines of C̄s , passing through s, is equal to α. Thus, an
elementary computation yields that, as θ → 0, the limit of the ratio of the x-coordinate

of qs2 to that of q
s
1 is equal to

1+sin α
2

1−sin α
2
, implying that the same holds for lim

θ→0

μ2
μ1
.

We conclude that our requirement that the orthogonal projection of c on P lies
inside [q1, q2] for any sufficiently small θ > 0 is satisfied if 2τ

1−τ
<

1+sin(α/2)
1−sin(α/2) , but not

if 2τ
1−τ

>
1+sin(α/2)
1−sin(α/2) . To guarantee the former, we apply Lemma 3, and choose δ > 0

sufficiently small, i.e., such that for the truncated body K ′ and heteroclinic orbits �i ,
the inequalities (11) remain true with the same value of α. Let c′ be the center of
mass of K ′ and o′ be the center of the spherical neighborhood of s. Furthermore, let
τ ′ = |s−c′|

|s−o′| . Note that for a suitable choice of r , we have
2τ ′
1−τ ′ >

1+sin(α/2)
1−sin(α/2) .

According to the previous paragraph, with a little abuse of notation, we assume that
for the original body K , for any sufficiently small θ > 0, the orthogonal projection
of c on P = P(dBC , θ, φ) lies in the interior of P ∩ K . Let dA = dA(θ, α) denote
the value of d, independent of φ, at which the projection of c lies on the boundary of
P ∩ K .

We have shown that, for φ ∈ [φB, φC ] and θ is sufficiently small, the intersection
circle P(dBC , θ, φ) ∩ K contains in its interior a new stable point with respect to c.
Thus, the graph of any such truncated body K̄ is homeomorphic to either B or C , or
to BC . Then, we fix a sufficiently small value of θ , and take the 2-parameter family
of convex bodies K (d, φ), where d ∈ [0, dBC ], and φ ∈ [φB, φC ], defined as the
truncation of K by the plane P(d, θ, φ): see Fig. 11). Finally, for any value of φ,
K (0, φ) = K , which shows that (10.1) in Definition 10 is satisfied. The remaining
properties inDefinition 10of aweakly suitable family follow from (12). This completes
the first step of the proof.

We note that the bifurcation diagram of Fig. 9 in the geometric parameters d, φ

used for the construction of the truncating plane and that of Fig. 8a in the unfolding
parameters μ1, μ2 of Sect. 3 are topologically but not differentiably equivalent. As
noted in Sect. 3, the bifurcation curves meet in a tangency in Fig. 8a; however, they
meet at a nonzero angle in Fig. 9.

4.2 Annihilating the Motion of Center of Mass by an Auxiliary Truncation

In this subsection, we modify the family K (d, φ) in such a way that the center of
mass of every member in the modified family remains at c. To do this, we need some
additional assumptions on K .

Let L be the line passing through s and c, and let w denote the point of L ∩ ∂K
different from s. We show that K = KA can be chosen in such a way that q is not
an equilibrium point, and that it does not belong to any edge of A. First we modify
the convex body K0 in class (1, 1) in Várkonyi and Domokos (2006) to satisfy this
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Fig. 11 The 2-parameter family of truncations used in the construction. Variation of the angle φ of rotation
of the truncating plane results either in a saddle–saddle bifurcation, or in no bifurcation. Variation of the
depth d of the truncation results in a saddle-node bifurcation; the graphs belonging to the two extremal
values of φ are identified with capital letters

property. Since the graph of K0 does not contain edges, we need only show that no
line through the center of mass passes through more than one equilibrium point.

Since K0 has D4 rotational symmetry, in a suitable coordinate system, its two
equilibrium points and center of mass c lie on the z-axis, and K0 is symmetric with
respect to the (x, y)-coordinate plane. Thus, all the tangent planes of K0, parallel to
the x-axis (i.e., satisfying the property that one of their translates contains the x-axis),
touch K0 at points in the (y, z)-plane. Clearly, cutting off a sufficiently small part of
K0 near the positive half of the x-axis does not change the number of equilibria nor
the primary equilibrium class {1, 1} of the body. The center of mass c′ of the modified
body K ′

0 is in the open half space {x < 0}. Hence, if the tangent plane of K ′
0 at some

point p is perpendicular to the segment [c′, p], then the outer normal vectors of this
plane have positive x-coordinates, implying that p is in the open half space {x > 0}.
To show that any graph A can be associated with a convex body KA satisfying this
property, we observe that, by Domokes et al. (2016, Theorem 1), KA can be obtained
from K ′

0 by a finite sequence of local deformations.
In Domokos et al. (2016), we also showed that a neighborhood of any point of a

non-isolated heteroclinic orbit, or a sink, or a source can be truncated by a sphere
without changing the class of the graph of the body. Furthermore, by Domokes et al.
(2016, Lemma 1), we obtain that, applying a sufficiently small truncation atw, the line
connecting the modified stable point and the modified center of mass intersects this
spherical surface. Thus, we may also assume that a neighborhood of w is a sphere S′.
Nevertheless, note that the center of S′ is not necessarily on the line L . Let cd,φ denote
the center of mass of the truncated spherical cap G(d, φ) near s. To obtain a modified
body K ′(d, φ), we truncate KA near q by a second plane P ′(d ′, θ ′, φ′), such that the
center of mass of the union of B, and the second truncated (open) spherical cap G ′,
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Fig. 12 The second truncation
near the critical point w opposite
to s; the circular arcs lie on the
spherical caps G and G′

s

c(d,  )
G(d,  )

G'(d') L(d,  )

L
o

c

w

is c (cf. Fig. 12). Clearly, in this case the center of mass of the doubly truncated body
K ′(d, φ) is identical to the center of mass c of K .

Let L(d, φ) denote the line connecting c and c(d, φ). First, let d ′ be fixed. Then,
changing θ ′ and φ′, the locus of the centers of mass of G ′ is a part of a sphere S′

d ′ ,
concentric to S

′, and the radius of this sphere depends on d ′ and S
′ only. Thus, if

θ > 0 is sufficiently small, for every line L(d, φ) and every (small) value of d ′ there
is a unique position of G ′ such that its center of mass lies on L(d, φ). Let us call this
cap G ′ = G ′(d ′). Note that the center of mass of the union of G(d, φ) and G ′(d ′)
is c if and only if, the torques about c exerted by the two caps are equal. Here, the
distance of the center of mass of G ′(d ′) from c is approximately |q − c|; that is a
fixed value. Thus, by continuity, for every pair of values d, φ, there is at least one
value of d ′ such that the center of mass of G(d, φ) ∪ G ′(d ′) is c. Let G ′(d, φ) be
the spherical cap G ′(d ′), where d ′ is the smallest value for which this property holds.
Then, clearly, G ′(d, φ) depends continuously on d and φ, and the 2-parameter family
K \ (

G(d, φ) ∪ G ′(d, φ)
)
has the required properties.

5 Summary

In this paper, we showed that the secondary classification of smooth convex solids,
based on the Morse–Smale complexes of their gradient vector fields, is not only com-
plete in the sense that all combinatorially possible Morse–Smale complexes can be
realized on smooth, convex bodies, but it is also complete in themore general, ‘dynam-
ical’ sense that all generic transitions between Morse–Smale complexes represented
by non-isomorphic abstract graphs can be realized on one-parameter families of con-
vex bodies. Among trajectories of physical convex shape evolution processes, we find
examples of such transitions, so our result implies that from a purely geometrical
viewpoint, there is no restriction on these trajectories.

Theorem 3 admits only one-parameter families exhibiting one single bifurcation.
However, if we only admit saddle-node bifurcations, then based on our argument in
Sect. 4 we can formulate a more general claim. A codimension one, generic saddle
node is either a creation or an annihilation, depending on whether the number of
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generic critical points increases or decreases by two. As stated before, at saddle–
saddle bifurcations the number of generic critical points does not change.

To formulate the claim, we introduce

Definition 11 A generic, one-parameter family v(λ) of gradient vector fields on the
2-sphere is called strictly monotone if it contains either only creations or only annihi-
lations and it does not contain any saddle–saddle bifurcations.

Using this concept, we can state the following corollary to Theorem 3:

Corollary 1 For any generic, strictly monotone, one-parameter family v(λ) of gra-
dient vector fields on the 2-sphere there exists a one-parameter family K (λ) of (not
necessarily smooth) convex bodies such that∇rK (λ) is topologically equivalent to v(λ)

for every value of λ.

To extend this statement further, we make

Conjecture 1 Every equivalence class on the family of convex bodies, defined by the
tertiary classification system, is connected. That is, for any two convex bodies K1 and
K2 with the same topology graph A there is a one-parameter family K (λ) of convex
bodies, where λ ∈ [0, 1], such that K (0) = K1, K (1) = K2, and the graph of K (λ)

is A for every value of λ.

Remark 1 If Conjecture 1 is true, Corollary 1 can be extended to include not only
strictly monotone, but also generic families. Also, Conjecture 1 implies that any two,
generic convex bodies can be connected by a generic one-parameter family of convex
bodies (via the Gömböc).

It is an interesting question to ask whether any two convex bodies in the same
primary class can be transformed into each other via a generic family of convex bod-
ies. One essential (apparently necessary), combinatorial condition for the affirmative
answer is that any two graphs in the same primary class can be transformed into each
other by a series of diagonal slides. For simple 2-colored quadrangulations (i.e., which
contain no multiple edges), this has been proved by Nakamoto (cf. Nakamoto 1996,
and also Theorems 3 and 6 in Matsumoto and Nakamoto 2013). Remark 2 shows that
this result can be extended to multigraphs in Q2.

Remark 2 For any A, B ∈ Q2 in the same primary class, there is a finite sequence of
diagonal slides that transforms A into B up to homeomomorphism.

Proof Observe that the classes {1,U } and {S, 1} do not contain simple graphs,whereas
all other classes do.We show that any A ∈ {S,U }, where S,U ≥ 2, can be transformed
into a simple graph in the same class. This, combined with Nakamoto’s result, yields
the assertion if S,U ≥ 2. We note that if S = 1 or U = 1, then, using a similar
technique, any graph can be transformed into the unique multigraph in which every
source or sink, respectively, has degree at most two.

We carry out the transformation in two steps. First, we show that A can be trans-
formed into a graph A′ that contains no degenerate face (examples of degenerate faces
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(a1)

(b1)

(c1)

(a2)

(b2)

(c2)
Fig. 13 Diagonal slides applied to transform a multigraph into a simple graph. The figure only illustrates
the operation performed on a subgraph, small triangles indicate where other parts of the graph may be
connected to the illustrated part. In each case degeneracy is removed by a diagonal slide. a1, b1, c1
show the representation in Q2 corresponding to the proof, a2, b2, c2 show the same operation in the T 3

representation for easier comparison with other Figures. a1 Removal of a degenerate face adjacent to a
non-degenerate face. b1 Removal of two degenerate faces with common edge. c1 Removal of multiple
edges on a subgraph which has only non-degenerate faces

are shown in panel b1 and c1 in Fig. 6). In the next step, we show that A′ can be
transformed into a graph A′′ that contains no multiple edge, and thus, is simple.

Let F denote a degenerate face of A. Then, its boundary contains either a unique
sink, or a unique source. If this vertex is denoted by vi , we label F by Vi . Clearly, since
S,U ≥ 2, A contains either unlabeled or differently labeled faces. Thus, A has two
faces such that they share an edge, and either exactly one of them is labeled, or they
are differently labeled. Observe that if they are differently labeled, than one of them
contains a unique sink, and the other one a unique source. Thus, in both cases there
is a diagonal slide that transform both faces into non-degenerate ones. Figure 13a1
shows this diagonal slide if one of the faces is non-degenerate, and panel (b1) if both
are non-degenerate. Hence, applying induction on the number of degenerate faces, A
can be transformed into a graph A′ containing only non-degenerate faces.

Now we show that A′ can be transformed into a graph with no multiple edges.
Choose a pair of edges E and E ′ of A′ that start and end at the same vertices vi and
v j . Let F1 and F2 be the two (non-degenerate) faces of A′ adjacent to E . Observe that
since these faces lie on different components of S2 bounded by E ∪ E ′, apart from
vi and v j , no vertex of F1 is connected to a vertex of F2. Thus, applying a diagonal
slide as in Fig. 13c, we reduce the number of edges connecting vi and v j while we
do not create multiple edges between other vertices. Hence, the assertion follows by
induction. ��

Although our techniques do not admit the investigation of tertiary edges of G, we
also formulate

Conjecture 2 All tertiary edges of G are physical.
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Remark 3 If Conjectures 1, 2 were true, then Remark 2 would imply that any two
generic convex bodies in the same primary class can be connected by a generic family
of convex bodies without exiting the primary class.

Remark 4 ThemetagraphG is a universal object, and there are some results concerning
its complexity. In particular, the number of vertices (tertiary classes) was identified in
Kápolnai et al. (2012) up to S +U = 10, for related work see also Cantarella (2015).

Regarding geophysical applications, we remark that in primary class {2, 2} one
of the secondary classes (that of ellipsoids) appears to be dominant and the other
appears to be entirely missing among natural pebble shapes. Our results show that one
could continuously transform members of one class into members of the other class.
Apparently, this process exists in natural abrasion only in one direction.

Acknowledgments This work was supported by OTKA Grant T119245 and the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences. Comments from an anonymous referee and Tímea
Szabó are gratefully acknowledged.

References

Archdeacon,D.,Hutchinson, J.,Nakamoto,A.,Negami, S.,Ota,K.:Chromatic numbers of quadrangulations
on closed surfaces. J. Graph Theory 37, 100–114 (2001)

Arnold, V.: Ordinary Differential Equations. MIT Press, Cambridge (1998)
Bloore, F.J.: The shape of pebbles. Math. Geol. 9, 113–122 (1977)
Brinkmann, G., Greenberg, S., Greenhill, C., McKay, B., Thomas, R., Wollan, P.: Generation of simple

quadrangulations of the sphere. Discrete Math. 305, 22–54 (2005)
Cantarella, J.: Knot Probabilities in Random Diagrams. arXiv preprint. arXiv:1512.05749 (2015)
Domokos, G.: Monotonicity of spatial critical points evolving under curvature driven flows. J. Nonlinear

Sci. 25, 247–275 (2015)
Domokos, G., Lángi, Z.: The robustness of equilibria on convex solids. Mathematika 60, 237–256 (2014)
Domokos, G., Lángi, Z., Szabó, T.: A topological classification of convex solids. Geom. Dedic. 182, 95–116

(2016)
Domokos, G., Szabó, T., Várkonyi, P., Sipos, A.: Pebbles, shapes and equilibria. Math. Geosci. 42, 29–47

(2010)
Domokos, G., Jerolmack, D., Sipos, A.A., Török, A.: How river rocks round: resolving the shape-size

paradox. PloS One 9, e88657 (2014)
Dong, S., Bremer, P., Garland, M., Pasucci, V., Hart, J.: Spectral surface quadrangulation. ACM Trans.

Graph. 25, 1057–1066 (2006)
Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse–Smale complexes for piecewise linear

2-manifolds. Discrete Comput. Geometry 30, 87–107 (2003)
Firey, W.: The shape of worn stones. Mathematika 21, 1–11 (1974)
Gross, J., Yellen, J.: Graph Theory and Its Applications. CRC Press, Boca Raton (2006)
Guckenheimer, J.,Holmes, P.:NonlinearOscillations,Dynamical Systems andBifurcations ofVector Fields,

1st edn. Springer, New York (1983); 7th corrected printing (2002)
Hilbert, D., Cohn-Vossen, S. (eds.): Geometry and the Imagination. AMS Chelsea Publishing, Providence

(1952)
Holmes, P., Rand, D.: Bifurcations of the forced van der Pol oscillator. Q. Appl. Math. 35, 495–509 (1978)
Illenberger, J.: Pebble shape (and size!). J. Sediment. Res. 61, 756–767 (1991)
Jerolmack, D.: Pebbles on Mars. Science 340, 1055–1056 (2013)
Kápolnai, R., Domokos, G., Szabó, T.: Generating spherical multiquadrangulations by restricted vertex

splittings and the reducibility of equilibrium classes. Period. Polytech. Electr. Eng. 56(1), 11–20
(2012)

Matsumoto, N., Nakamoto, A.: The number of diagonal transformations in quadrangulations on the sphere.
In: Akiyama, J., Kano, M., Sakai, T. (eds.) Computational Geometry and Graphs, volume 8296 of

123

http://arxiv.org/abs/1512.05749


J Nonlinear Sci (2016) 26:1789–1815 1815

Lecture Notes in Computer Science, vol. 8296, pp. 110–119. Springer, Heidelberg (2013). Revised
selected papers from the Thailand-Japan Joint Conference (TJJCCGG2012) held at Srinakharinwirot
University, Bangkok, December 6–8, 2012

Miller, K., Szabó, T., Jerolmack, D., Domokos, G.: Quantifying the significance of abrasion and selective
transport for downstream fluvial grain size evolution. J. Geophyis. Res./Earth Surf. 119, 2412–2429
(2014)

Milnor, J. (ed.): Morse Theory. Princeton University Press, Princeton (1963)
Nakamoto, A.: Diagonal transformations in quadrangulations of surfaces. J. Graph Theory 21(3), 289–299

(1996)
Nakamoto, A.: Generating quadrangulations of surfaces with minimum degree at least 3. J. Graph Theory

30, 223–234 (1999)
Negami, S., Nakamoto, A.: Diagonal transformations of graphs on closed surfaces. Sci. Rep. Yokohama

Nat. Univ., Sec. I 40, 71–97 (1993)
Rayleigh, L.: The ultimate shape of pebbles, natural and artificial. Proc. R. Soc. Lond. A 181, 107–118

(1942)
Rayleigh, L.: Pebbles, natural and artificial. Their shape under various conditions of abrasion. Proc. R. Soc.

Lond. A 182, 321–334 (1944)
Rayleigh, L.: Pebbles of regular shape and their production in experiment. Nature 154, 161–171 (1944)
Sotomayor, J.: Generic one-parameter families of vector fields on two-dimensional manifolds. Bull. Am.

Math. Soc. 74, 722–726 (1968)
Várkonyi, P., Domokos, G.: Static equilibria of rigid bodies: dice, pebbles and the Poincaré–Hopf theorem.

J. Nonlinear Sci. 16, 255–281 (2006)
Varkonyi, P., Domokos, G.: Static equilibria of rigid bodies: dice, pebbles, and the poincare-hopf theorem.

J. Nonlinear Sci. 16(3), 255–281 (2006)
Williams, R., Grotzinger, J., Dietrich, W., Gupta, S., Sumner, D.: Martian fluvial conglomerates at Gale

crater. Science 340, 1068–1072 (2013)
Zingg, T.: Beitrag zur schotteranalyse. Schweiz Mineral Petrogr Mitt. 15, 39–140 (1935)
Zomorodian, A. (ed.): Topology for Computing. Cambridge University Press, Cambridge (2005)

123


	A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields
	Abstract
	1 Introduction
	1.1 Motivation and Background
	1.2 Definitions and Main Result
	1.3 Summary of Proof

	2 Combinatorial Part
	3 Dynamical Part
	4 Geometrical Part
	4.1 Neglecting the Motion of the Center of Mass
	4.2 Annihilating the Motion of Center of Mass by an Auxiliary Truncation

	5 Summary
	Acknowledgments
	References




