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1 Background

1.1 A linear threshold model of cascades in networks

We investigate cascades in networks by a linear threshold model. We encode the network topology in a
graph G = (V,E). Each agent corresponds to a node in the set V = {1, 2, 3, ..., n}. E ⊆ V × V is the set
of edges. We consider a undirected unweighted graph. Each agent in G has a state which takes one of the
two values - on (active) and off (inactive). Initially, all agents are switched off except an initial active set
S0. All agents choose individual thresholds randomly and independently drawn from a uniform distribution
on the interval [0, 1]. In the following process, once the proportion of neighbours that switch exceeds one’s
threshold, it switches on. Once an agent switches, it remains switched forever. This process propagates
through the network. Other dynamical models on networks regarding cascades are shown in [1] and [2].

1.2 Cascade centrality

The cascade centrality[4] of node v is a property of v which reflects its ability of spreading information
through the network. Cascade centrality is defined as the expected number of active nodes at the end of the
linear threshold process given v is the only initial active node.

1.3 Multiplex networks

A multiplex network G is a family of m ∈ N undirected unweighted graphs G1, ..., Gm. Each graph Gk =
(V,Ek), 1 ≤ k ≤ m is referred to as a layer of the multiplex network. The node set V = 1, 2, 3, ..., n is
the same in all layers. The edge set of layer k is Ek ⊆ V × V can be different in different layers. In my
research, I start with two-layer multiplex networks. Here I assume both G1 and G2 are connected graphs.
The multiplex network is a special type of the multilayer network.[3]

2 Goal

Lim et al.[4] show a simple and analytically tractable way of calculating cascade centrality. My goal is
to generalize cascade centrality to multiplex networks, find a systematic and analytically tractable way to
calculate it and derive analytical results which can give us insights into cascades in multiplex networks. In
multiplex networks, cascade centrality of v is also defined as the expected number of active nodes at the end
of the linear threshold process given v is the only initial active node.

3 Method

The key point in the calculation of cascade centrality of nodes in single layer networks is to determine the
probability of switching of each node in the network. Lim et al.[4] leverage results of Kempe et al.[5]. Kempe
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et al.[5] proves that the linear threshold process produces the same probability distribution in the network
as the live-edge model.

3.1 Live-edge Model

For a certain node v, denote the set of its neighbours as Nv and the number of neighbours, i.e. its degree,
as dv. An edge between u ∈ V and v ∈ V is denoted as Euv.

In the live-edge model, we transform G into an directed graph by treating each edge Euv in G as two
directed edges, one coming from u to v and the other from v to u. We let node v randomly select one edge
out of all incoming edges. All edges coming into the node have equal chances to be selected, which is 1/dv.
The selected edge will be labeled to be ”live”, while the rest of them will be labeled to be ”blocked”. Every
node in the network follows the same procedure so that in the end, every directed edge will be either live or
blocked. If there is a directed path from some node in S0 to v consisting entirely of live edges (it is defined
as a live-edge path), then we say v is reachable from S0 via live-edge paths.

3.2 Equivalence of the linear threshold model and the live edge model

The two models are both probabilistic models. In the linear threshold model, random variables are the
thresholds of agents. At the end of the process each agent will have a probability of being active given S0.
In the live-edge model, random variables are the live edges that nodes select. At the end of the process,
each agent will have a probability of being reachable from S0 via live-edge paths. Kempe et al.[5] prove
that the two probability distributions are the same. Directly computing the probability distribution of linear
threshold process is not easy since it can only be run iteratively. Thus we turn to calculate the probability
distribution of the live-edge model. I seek a similar equivalence in the multiplex context.

3.3 Linear threshold model in two-layer multiplex network

Each agent v chooses a threshold µv1 in layer 1 and a threshold µv2 in layer 2. All thresholds are randomly
and independently drawn from a uniform distribution on the interval [0, 1]. Since a node need to combine
two inputs to make a decision, we propose two protocols:

• Protocol OR: a node v will switch if either portion of active neighbours in layer 1 exceeds µv1 or
portion of active neighbours in layer 2 exceeds µv2;

• Protocol AND: a node v will switch if both portion of active neighbours in layer 1 exceeds µv1 and
portion of active neighbours in layer 2 exceeds µv2.

3.4 Live-edge path model in two-layer multiplex networks

We let node v randomly select one edge in each layer out of all incoming edges in that layer. All edges coming
into the node in the same layer have equal chances to be selected. The selected edge will be labeled to be
”live”, while the rest of them will be labeled to be ”blocked”. Every node in the network follows the same
procedure except nodes in the initial active set S0. All of the incoming edges of nodes in S0 will be labeled
as ”blocked”. In the end, every directed edge will be either live or blocked. We then define a live-edge tree.

Definition 3.1. Given a selection of live edges and the initial active set, a live-edge tree associated with
agent v is a full binary tree that satisfies

1. Every node in the tree corresponds to an agent in the multiplex network G. The root node corresponds
to agent v;

2. For each parent p in the tree, p’s left child is the agent that p’s live edge in layer 1 connects to. p’s
right child is the agent that p’s live edge in layer 2 connects to.
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Now we propose two reachability definitions:

• Reachability OR: a node v is reachable via a selection of live edges if the live-edge tree associated
with v has at least one finite branch. In other words, at least one branch ends with a node in S0;

• Reachability AND: a node v is reachable via a selection of live edges if all branches of the live-edge
tree associated with v are finite. In other words, all branches end with nodes in S0.

4 Results

I prove that the probability distribution of switching by running linear threshold model under Protocol
OR/AND given S0 is the same as the probability distribution of reachability from S0 defined by Reachability
OR/AND. Then I provide a systematic way of calculating this probability distribution. I also provide an
example of Protocol OR as well as an example of Protocol AND, and show a way of calculating the probability
manually.

5 Future Work

Since the general way of computing the probability distribution is not time efficient. We aim to show some
bound or order of the probabilities distribution of different networks. We can also generalize our method in
multiplex networks with more than two layers.
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