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I. OVERVIEW

The overarching goal of my work is to design dynamics
from which we can develop systematic methodology for
allocating interconnected agents within a multi-agent system
across multiple options, or tasks, in a distributed manner.
This is motivated by questions of how networked vehicles in
remote contexts can be controlled, or can control themselves,
in order to carry out tasks such as observation of dynamic
environments, tracking of wildlife, or measurements of pollu-
tants in ocean waters. The dynamics I design will synthesize
a wide variety of stable group behaviors including agreement
within a network, disagreement by parts of the network, and
mixed outcomes in between. Furthermore, smooth transitions
between the various stable behaviors will be governed by a
small number of well understood parameters.

Within multi-agent systems individual agents sense their
local environment, receive communicated information about
the states of other nearby agents, and update their behavior
appropriately in response to these inputs. In our distributed
design framework, each agent in a multi-agent system must
independently make the choice of which action to take,
which direction to go, or which alternative to favor, based
on the information it gathers from its environment and from
its communication with other nearby agents in the network.
At the level of the group the individual choices must add up
to a well-coordinated collective behavior.

A flexible mechanism for distributed control of emergent
collective agreement for a group of agents choosing between
two equally valuable options was the subject of past work
carried out in the group [2], [3]. Many design tasks such as
resource allocation and autonomous exploration may require
group level outcomes beyond consensus, such as subpopula-
tions of agents choosing to carry out different tasks, in order
for the group to be successful in its objective. Furthermore
within complex environments, change in environmental con-
ditions can change the optimality of the group-level strategy
currently being carried out by the system. To address this
we must design adaptable systems that are able to smoothly
transition from one group-level strategy such as agreement
to other complex strategies, such as different tasks being
carried out by different subpopulations of agents, in response
to external triggers.

Looking to known natural systems to guide modeling
provides a logical starting point for our design task. Systems
in nature exhibit emergent group behaviors that are stable,
robust, and adaptive to change - qualities we do not typi-
cally capture together in engineered systems. Two particular
models that will serve as my starting point are the Hopfield

model for the graded computations performed by networks
of two-state neurons [5] and the Replicator-Mutator model
which is used to describe the dynamics of complex adaptive
systems in population genetics, biochemistry and evolution
of language [6]. Both are nonlinear models that feature a
multitude of complex emergent behaviors at the group level.

I will begin by considering idealized symmetric versions
of the natural models. In multi-agent decision making and
task allocation problems symmetries arise naturally and serve
as a maximally flexible starting point. One symmetry is
associated with permuting individuals in a homogeneous
group, and another with permutations among options that
are viewed as equally valuable by the agents. The models
must then be modified to

1) exhibit the richest possible dynamics
2) have system variables and steady-state solutions that

are interpretable in the context of multi-agent task
allocation

3) have a minimal number of system parameters that
govern transitions between the various possible system
configurations

These design goals can be achieved using tools of sin-
gularity theory, a robust bifurcation theory that rigorously
classifies behavior of dynamical systems near transition
points [1]. In the framework of singularity theory we study
dynamical systems in one or more state variables whose time
evolution is governed by

ẋ = f(x, u) (1)

where f : Rn × R → Rn is a smooth map, x ∈ Rn is
the state vector, and u ∈ R is a system parameter. Within
this formalism, solving the recognition problem identifies the
dynamics of the system in question with a local equivalence
class, the simplest member of which is a representative
normal form.

The dynamics of normal form equations for systems with
permutation symmetries are mapped out in applied math-
ematics literature. Constraining the models we work with
to meet equivalence conditions to known symmetric normal
forms provides a direct mapping between the solutions
and parameters of the interpretable systems and those of
the normal form equations. Thus, we can easily identify
and interpret all model behaviors that are available to the
nonlinear system, as well as identify the relevant parameters
that govern system transitions. Once the models are finalized,
I will use feedback to design adaptive protocols for the
parameters that enable system response to environmental
triggers. This is a novel approach to system design.



Fig. 1. Four distinct topological configurations the model bifurcation diagram takes on. Solid lines are stable solution branches, dashed lines are unstable
solution branches. Solutions in blue lie on the agreement manifold (x1 = x2, both agents choose the same option with equal magnitude of opinion),
solutions in black on the disagreement manifold (x1 = −x2, agents choose opposing options with equal magnitude of opinion), and solutions in red
that appear in two of the four distinct dynamical regions are “mixed” solutions that are steady state outcomes somewhere in between agreement and
disagreement.

Realistic systems can have asymmetry due to disturbance
and uncertainty encountered in complex environments, which
can be modeled as deviation from an idealized symmetric
setting. The analysis and design I will carry out using
intuition from singularity theory will guarantee robust and
stable outcomes when model symmetry is broken. For the
symmetric normal forms we consider, the system dynamics
can change in a finite number of well understood ways in re-
sponse to disturbance. Typically we observe that outside of a
small neighborhood of the bifurcation point, stable branches
of solutions predicted by the symmetric case persist. In
other words, symmetry serves as the organizing center for
group decision dynamics. It would take a significant amount
of disturbance to cause a system in a stable configuration
to evolve away from its initial state. Therefore the control
protocols I will create will still be reliable in real world
asymmetric scenarios.

II. PRELIMINARY RESULTS

In the beginning stages of my proposed work we consider
the simplest scenario: two agents allocating between two
equally valuable options or tasks. The results summarized in
this section are the subject of a paper in preparation for sub-
mission, tentatively titled Flexible task allocation dynamics
for two agents and two options, and of an upcoming SIAM
talk in May. We define xi ∈ R to be the opinion state of agent
i, with xi = 0 corresponding to agent i being in the state
of indifference towards either option, xi > 0 corresponding
to a preference for option 1, and xi < 0 corresponding to a
preference for option 2.

We start with a symmetric generalization of a Hopfield
neural network with two communicating processing units.
The dynamics of this two-agent system are organized by an
S2 × S2-symmetric nondegenerate normal form, the recog-
nition problem for which is worked out in [1]. The finalized
model takes the form

ẋi = −xi + u
(
S(cxj) +

1

2
S(2(xi − cxj))

)
(2)

where S(·) is an odd sigmoid saturating function and u, c
are system parameters. u is the bifurcation parameter varying
which drives the system from a steady state of group inde-
cision to one in which indecision destabilizes and a number
of nontrivial steady states emerge. Varying the parameter c
modifies the topological structure of the bifurcation diagram.

There are four distinct parameter space configurations
the system can take on, pictured in bifurcation diagrams
in Fig. 1. With smooth variation of a single parameter c
we can drive the system from a configuration within which
consensus is the only stable group behavior to one within
which disagreement is the only stable group behavior, among
many other potential transitions. Next we will incorporate en-
vironmental sensing and feedback dynamics into the control
parameters in the model to enable smooth transitions between
dynamical behaviors that adapt to environmental triggers. We
will then consider more complex cases, starting with 2 agents
choosing between 3 options and 3 agents choosing between
2 options in a similar symmetric framework, with further
generalizations to larger systems down the line.
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