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Evolution has perfected very different six-legged walking

machines from common neural and biomechanical components

in an ancestral insect, as exemplified by the American cockroach

and the stick insect. Comparative experimental investigations of

both intact animals and reduced neural preparations, integrated

with mathematical modeling, have been instrumental in

advancing our understanding of insect locomotion. Locomotion

in stick insects and cockroaches can be described by a related

series of mathematical models that describe and quantify the

effects of central coupling and feedback, and help explore the

role of descending inputs (from higher neuronal centers) and

neuromodulation. Insights into sensory–motor interactions and

adaptive motor control in insects are useful in designing more

responsive, robust, and adaptable bio-robots, which, in turn, can

contribute to hypothesis-testing in biology.
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Introduction
Insects are among the most evolutionary successful

groups of organisms (in terms of biomass, dispersion
www.sciencedirect.com 
and ecosystems distribution). One reason for this preemi-

nence is their remarkable capacity to rapidly generate

adaptable movement in terrestrial, airborne, and aquatic

environments. Six-legged locomotion, in particular, is

exceptionally effective, having the advantage of static

stability during much of walking, and dynamic stability as

speed increases [1–3]. To generate different behaviors in

changing environments (on both physiological and evo-

lutionary time-scales), insects employ multi-level adapta-

tions in anatomical structures of body, legs and joints, as

well as in control mechanisms [4,5]. They can therefore

provide invaluable information for understanding adap-

tive control of animal behavior.

Drawing common neural and biomechanical components

from early terrestrial ancestors of insects, evolution has

perfected very different walking machines. The Ameri-

can cockroach, Periplaneta americana, is adept at rapid

running on planar surfaces (the floor of the tropical rain-

forest or that of your kitchen), regardless of details of the

terrain; in contrast, the stick insect, Carausius morosus, has

adapted for walking in complex, unpredictable environ-

ments, with emphasis on precise leg placement rather

than speed. Figure 1a presents the rather close phyloge-

netic relations of these two very different insects.

Our understanding of legged locomotion in general, and

specifically in insects, has been greatly facilitated by

acknowledging the importance of interactions among

neural commands, muscle and body mechanics, and

the environment. Employing comparative approaches

and combining experiments and theory have been instru-

mental. As we argue here, this is very well exemplified in

studies of stick insects and cockroaches.

The stick insect model
Stick insects are nocturnal animals that inhabit bushes

and trees. Their locomotor system is optimized for climb-

ing and propulsion in unpredictable environments, while

avoiding predation by means of twig mimesis. Their

relatively slow movements, and the easy access to their

neuro-muscular machinery for walking, make them ideal

for studying the neural basis of motor behavior.

One important characteristic of the stick insect locomotor

system is the prominent modular structure of the thoracic

neural circuits. Central pattern generators (CPGs), neuronal
Current Opinion in Insect Science 2015, 12:1–10
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(a) A reduced phylogenetic tree demonstrating the close relations between stick insects and cockroaches. (b)–(d) Leg coordination patterns. At

high speed with little or no load, stick insects usually utilize the tetrapod coordination (b). The tripod or double-tripod gait, predominantly used by

cockroaches (c), is seen in larval stages of the stick insect but much less so in adults; adult stick insects also utilize other non-distinct, less

regular, coordination patterns (d). Blue bars represent swing phases of the left (L) and right (R) front (1), middle (2) and hind legs (3).
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circuits capable of generating rhythmic motor output in the

absence of descending or sensory inputs, have been identi-

fied for individual joints and legs. Mechano-sensory feed-

back pathways have been shown to sculpt CPGs output to

produce functional stepping (see review [6]). Current

knowledge on stick insect motor control is among the most

complete in the animal kingdom, spanning the identifica-

tion of component neurons within CPGs [7] to the bio-

mechanical properties of leg muscles (e.g. [8–10]), and has

enabled studies of modifications in sensorimotor processing

for motor flexibility [11�,12].

Three different consistent coordination patterns have

been described for stick insects walking on level ground.

At very low speeds or carrying loads, the legs coordinate in

a metachronal wave that propagates from back to front on

one and then the other body side, leaving five legs on

the ground (in stance) at all times. At higher speeds with

little or no load, four legs are typically in stance and a

diagonally opposite pair in swing in tetrapod coordination

(Figure 1b). A third coordination pattern, the tripod or

double tripod, with three legs in stance and three in swing

(Figure 1c), is observed in larval stages but rarely in adults

[4,13�,14]. It should be noted, however, that these three

gaits represent ideal forms of coordination; walking ani-

mals do not typically produce such distinct gaits, but

rather non-discrete, intermediate versions of them

([14]; Figure 1d).

A set of six coordination rules, describing inter-leg coor-

dination, have been identified by studying the influence

of perturbations of the stepping movements of one leg

on itself and on the movements of other legs [13�,15].

This strongly suggests that sensory feedback is required

to create proper inter-leg coordination [13�], a notion

supported by recent studies, e.g. on the influence of

front-leg sensory feedback on motor activity in adjacent

caudal segments (e.g. [16,17]). Experiments on in vitro
thoracic preparations, isolated from all descending and

sensory inputs, generating fictive locomotion  (i.e. rhyth-

mic motor output resembling that recorded during nor-

mal intact walking), indicate that no strong central

couplings exist among the segmental networks that

generate rhythmic motor activity in the stick insect

[18]. Hence, it can be concluded that the control of stick

insect locomotion is largely based on a feedback control

scheme.

The cockroach model
Renowned for their fast and stable locomotion, cock-

roaches are important in the study of all aspects of legged

locomotion: performance, maneuverability and dynamic

stability (e.g. [19,20]), neural control (e.g. [21–23]), and

biomechanics (e.g. [3,24–26]). Work has focused to date

mainly on the American cockroach (P. americana) and on

the slower-walking discoid cockroaches (Blaberus discoi-
dalis), which offer larger size and durability.
www.sciencedirect.com 
Stability in cockroach locomotion is partly due to the use

of the double-tripod gait over most of the insect’s speed

range, from 2 cm/s to 1.5 m/s (for P. americana), Figure 1c

[1,27]. Cockroaches also have the ability to sustain speed

and gait patterns while seemingly ignoring features of the

terrain and minor obstacles [28,29]. Furthermore, a coor-

dinated fictive walking gait with consistent double-

tripod-like phase relationships can be generated by the

thoracic ganglia of the cockroach without sensory feed-

back from leg proprioceptors (e.g. [23]). These findings

have led to a general view that inter-limb coordination in

the cockroach is based primarily on feed-forward motor

control [21]. As discussed below, this view has also pre-

vailed in modeling cockroach locomotion [30,31].

However, as recently reviewed by Ayali et al. [32], sensory

feedback is also instrumental for generating adaptive

locomotion in cockroaches (see also [33]). Signals from

leg mechanoreceptors detecting muscle stretch, load,

joint angles, and position adjust the magnitude of muscle

contractions, both through reflex activation of motor-

neurons (MNs) and via pattern-generating inter-neurons

(INs) (see [34] and references therein). Such signals not

only contribute to coordination of the joints actuating

each leg, but also help establish inter-leg coordination, as

demonstrated by providing controlled sensory inputs to

reduced, deafferented preparations during pharmacolog-

ically induced fictive walking-like motor patterns (e.g.

[35]), or by manipulating specific sensory inputs in intact,

walking preparations (e.g. [33,36�]). Mechanisms for in-

ter-segmental transfer of joint angle information and

inter-leg mechanical coupling mediated through local

reflexes have been suggested [37].

While cockroach locomotion  has been well-studied, our

knowledge is still far from complete. Detailed descrip-

tions of thoracic CPGs, muscle properties, body me-

chanics, and their interactions are lacking (to a

somewhat lesser extent this also applies to the stick

insect). This review aims partly to draw attention to

these limitations and to call for further research.

Such gaps in our knowledge can also be bridged by

means of mathematical models, and computer  simula-

tions (Figure 2). As we illustrate below, models ranging

from rigid bodies with passively sprung legs to biophy-

sically based neural circuits actuating muscles in real-

istic body and limb geometries, have already advanced

our overall understanding.

Mathematical models of insect locomotion
Theoretical neuroscience provides a quantitative basis for

describing what nervous systems do, determining how

they function, and uncovering the general principles by

which they operate. Mathematical models and their

computational realizations are key tools in this theory.

In the present case, such models are based on data acquired

by both observation and experimental manipulation of
Current Opinion in Insect Science 2015, 12:1–10



4 Neuroscience

Figure 2
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Comparative experimental investigation, including studies of intact behaving insects and reduced, in vitro, neural preparations, together with

mathematical modeling, offer an integrated approach to extending our understanding of legged locomotion in insects.
intact animals and on fictive motor patterns recorded in
vitro (Figure 2). Early models of insect CPGs used coupled

oscillators [38]; more detailed descriptions of feedback and

stepping rules were subsequently developed [13�,39��].
These models predicted leg kinematics and intra-leg and

inter-leg timing relations, but did not include muscle
Current Opinion in Insect Science 2015, 12:1–10 
mechanics or address dynamical stability. Locomotion

requires that neural circuits conspire with muscles and

limbs to generate reaction forces that propel the body.

Mathematical models can likewise integrate neural sub-

strates with biomechanics [40,41��], as we indicate in the

following.
www.sciencedirect.com
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Current modeling efforts for stick insects

Stick insect functional stepping motor outputs rely heavi-

ly on proprioceptive feedback modifying the activity of

rhythmic CPGs (cf. [6,42]). Their variable walking pat-

terns [14] suggest independent control of leg joints, and

subgroups of INs and MNs that can achieve this have

been identified [7,18,43]. Current models therefore con-

tain three joint CPGs for each leg [44–46,47�], and such

leg CPGs can be connected to produce inter-leg coordi-

nation. These models use biophysically based ion-chan-

nel (Hodgkin–Huxley-type) models of INs and MNs (see

Box 1) to describe cellular mechanisms that generate

rhythmic motor activity and neural circuits responsible

for adaptive behaviors like backward and sideward step-

ping.

Sensory feedback of motions and forces in leg segments

has been included in recent models [48], although these

utilize thus far only behavioral descriptions relating to

anterior and posterior extreme positions of individual legs

during walking (cf. the rules of Cruse [13�]). The identi-

fication of neural substrates for inter-leg coordination will

require models that describe specific feedback pathways

on the cellular level. First steps in this direction were

made by [49,50,51�].

Current modeling efforts for cockroaches

Passive machines and models (based on passive dynamics

only) show that stable walking is possible without sensory
Box 1 Mathematical models and phase reduction.

Differential equations first developed by Hodgkin and Huxley [83] are

key components of CPG models:

C
dv

dt
¼ �

X

k

gk ðwÞðv � V jÞ � Isyn þ Iext ; tk ðvÞ
dwk

dt

¼ wk ;1ðvÞ � wk �

The state variable vðtÞ is the neuron’s transmembrane voltage and

components wkðtÞ of the vector wðtÞ track opening and closing of

channels transporting ions across the cell membrane. Parameters C,

Vj denote membrane capacitance and reversal potentials. Nonlinear

functions wk;1ðvÞ; tkðvÞ containing more parameters, characterize

channel states and response time dependence on voltage; currents

Isyn, Iext describe synaptic inputs from other cells in the thoracic

network and from mechanoreceptors, SOG and brain.

In CPGs voltages typically oscillate in limit cycles and the state of

each neuron or of a local network can be described by its phase

ui. For the model of Couzin-Fuchs et al. [36�] this phase reduction is

dui

dt
¼ vi þ

X6

j¼1; j 6¼ i

ai jHi jðu j � uiÞ; i ¼ 1; . . . ; 6

Interdependence of the frequencies vi, coupling strengths aij and

other parameters characterizing the inter-leg coupling functions Hij

reveal how gaits change with speed.

www.sciencedirect.com 
feedback [52]. Models of cockroach walking [24] began

with a passive platform similar to the spring-loaded

inverted pendulum [53], to which a CPG, muscles, and

simplified leg geometries were added to create an inte-

grated neuro-mechanical model [30,31,54]. Although only

translation motions and yaw rotations in the ground plane

were considered, over 270 differential equations were

needed to describe CPG INs, MNs, muscles, and rudi-

mentary proprioceptive feedback.

Fortunately, mathematical analysis can simplify such a

model, running in an idealized periodic rhythm, by re-

ducing it to an interconnected set of phase oscillators
depicting subunits of the CPG-MN-muscle system

[55]. The degree of reduction depends on the question

addressed: from a single joint [56] to 24 oscillators repre-

senting MNs driven by the CPGs and subject to feedback

from leg forces [57]. Recently, Couzin-Fuchs et al. [36�]
modeled the network coordinating each leg as a single

oscillator (see Box 1), in which inter-dependence of

oscillator frequencies, preferred phase differences, and

coupling strengths between oscillators characterized how

gaits change with speed. This reduction, however, lumps

the effects of central, sensory, and mechanical coupling

together, and so cannot distinguish among them.

Toward unified models

Models such as those of Kukillaya et al. [31] and Tóth

et al. [46,47�] span the space of central-decentralized and

feedforward-feedback control (cf. [58]), but their com-

plexity makes analyses of such models difficult. A ‘com-

plete’ stick insect model, with 18 joint CPGs, muscles,

and sensory pathways would contain over 500 differential

equations. However, as in [56], phase reduction could

simplify each leg network and thus help determine the

contributions to inter-limb coordination from different

joint CPGs and mechanosensors, facilitating studies of

dynamic stability under varying conditions (Figure 3).

Such reductions combine or blur biophysical details, but

their efficacy can be tested. Specifically, phase–response-

curves, which quantify the receptivity of oscillators to

inputs [16,35,51�] and are used in computing coupling

functions [30,55], can be estimated experimentally. Thus,

phase reduced models can be compared directly with

data.

More generally, because their neural architectures and

mechanosensory pathways are practically similar, stick

insects and cockroaches can be described by a common

set of mathematical models with suitably differing pa-

rameters (Figure 3). Models ranging in detail from 6 leg

units to 18 joint oscillators plus associated MNs and

muscles would enable direct comparisons of the effects

of central coupling and feedback, as well as exploration of

the role of descending inputs and neuromodulation. We

now briefly address the latter two important concepts in

locomotor behavior.
Current Opinion in Insect Science 2015, 12:1–10
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Figure 3
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A unified modeling framework. (a) Neuromuscular models of a single joint in a stick insect leg (left; following Tóth et al. [51�]) and in a

cockroach leg (right; following Kukillaya et al. [31]). (b) Reduced models of ipsilateral locomotion networks in the stick insect, including

three joints per leg (left; following Daun-Gruhn [50]), and in the cockroach (right; following Kukillaya et al. [31]). In both (a) and (b) inhibitory

Current Opinion in Insect Science 2015, 12:1–10 www.sciencedirect.com
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Motor pattern selection in insect locomotion
Based on their phylogenetic relations, and on shared prin-

ciples of their legged locomotion, one can posit a common

motor control scheme for stick insects and cockroaches, and

for insect locomotion in general. Under this scheme, spe-

cific motor behaviors are initiated and different adaptations

are mediated via two major mechanisms: descending con-

trol and neuromodulation. While much of the neural archi-

tecture for generating and coordinating rhythmic leg

movements resides in local circuits of the thoracic ganglia,

neural circuits mediating initiation, maintenance, and mod-

ification of locomotion are found in the insect head ganglia.

It is well accepted that removing the brain and leaving the

suboesophageal ganglion (SOG) connected to the thoracic

ganglia uncovers an inhibitory influence of the brain. This

increases the tendency for locomotion, albeit with specific

deficits in postural adjustments (e.g. [59,60]). Recent work

has provided further insights into the interplay among head

ganglia and their role in motivation and decision to engage

in locomotion. One particular insect brain region has drawn

considerable attention: the midline neuropils of the proto-

cerebrum forming the central complex (CC) are currently

thought to be physiologically genetically homologous to the

basal ganglia of vertebrates [61��]. The CC has been

implicated in locomotion-related sensory processing, in

initiation and maintenance of walking, and in turning

and obstacle crossing behaviors (recent reviews in

[62,63]). Studying the effects of wasp venom on cockroach

locomotion, Kaiser and Libersat [64] recently suggested

that the CC is predominantly permissive for the initiation of

spontaneous walking, with a role antagonistic to that of the

mushroom bodies (brain neuropils important in olfactory

information processing, learning, and memory). Under this

scheme the SOG is also instrumental in spontaneous walk-

ing initiation, in leg coordination, and in sensory–motor

integration [60,64–66]. The insect head ganglia may also

include descending interneurons, acting as command neu-

rons [67] responsible for executing specific locomotor pat-

terns (e.g. forward or backward walking in the fly [68]), as

also reported for other invertebrates (e.g. worms [69]).

Neuromodulation plays an important role in the selection

of motor outputs (e.g. [70,71]). Neuromodulatory neurons

can activate and organize, and thus modify, sensory–
motor networks, allowing a wide repertoire of variations

on single motor patterns (e.g. [72]). Insect neuromodu-

lators (primarily bio-amines and peptides) are involved at

different levels, from central neural circuits to the pe-

riphery (e.g. [73��,74,75]. They can thus dynamically

adjust coupling strengths among joint and leg CPGs to

generate different coordination patterns, and modulate

context-dependent shifts from feedforward-dominated to
( Figure 3 Legend Continued ) and excitatory connections are denoted b

connections via sensory feedback by arrows. (c) Simplified model with s

neighboring legs via coupling functions Hij, derived by phase reduction f

platform for comparative studies.
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feedback-dominated control for different walking speeds

and environments, or at successive developmental stages.

Insect-specific locomotor behavior can thus be realized

through the complex combination and interaction among

distinct descending control and neuromodulatory states.

Concluding remarks
The comparative experimental investigation of different

leading models, including studies of both intact behaving

animals and reduced neural preparations, aided by mathe-

matical modeling (Figures 2 and 3), remains the best way to

facilitateour understanding of legged locomotioningeneral,

and specifically in insects. There is also much interest in

insect locomotioninthe rapidlygrowing field ofbio-inspired

robotics. Drawing inspiration from insects’ compact and

efficient designs and robustness coupled with plasticity,

engineers have created successful models and machines

(e.g. [39��,76–78]). The present review has provided

insights into interactionsbetween sensory and motorcontrol

pathways in general, and highlighted concepts in adaptive

motor control that may be useful in designing more respon-

sive, robust, and flexible robots. Such bio-robots, in turn, can

greatly contribute to hypothesis-testing in biological studies

[79,80].

As noted above, a major question in insect locomotion

regards the role of the head ganglia and, moreover, the

interaction of descending inputs and neuromodulation in

the control of locomotion circuits. This is where a com-

parative approach will be most effective. While much

knowledge has been and will be drawn from the geneti-

cally tractable fly model (e.g. [68,81��,82�], such data can

gain substantial merit when compared to findings from

the well-established stick insect and cockroach models.

Finally, data from insect models must always be considered

within the broader perspective of legged locomotion in

general. Insects offer evolutionarily perfected solutions to

challenges in all aspects of locomotion, from neural and

muscle mechanisms to body form and kinematics. Evolu-

tion tends to preserve successful principles, if not details,

and knowledge gained from insects can and should be

applied elsewhere.
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45. Knops S, Tóth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S:
A neuromechanical model for the neuronal basis of curve
walking in the stick insect. J Neurophysiol 2013, 109:
679-691.
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An elegant study combining genetic tools and high-speed imaging in the
study of the role of proprioceptive feedback in inter-leg coordination in the
fly.
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