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Gait Transitions in a Phase Oscillator Model of an Insect Central Pattern
Generator∗
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Abstract. Legged locomotion involves various gaits. It has been observed that fast running insects (cockroaches)
employ a tripod gait with three legs lifted off the ground simultaneously in swing, while slow walking
insects (stick insects) use a tetrapod gait with two legs lifted off the ground simultaneously. Fruit
flies use both gaits and exhibit a transition from tetrapod to tripod at intermediate speeds. Here
we study the effect of stepping frequency on gait transition in an ion-channel bursting neuron model
in which each cell represents a hemisegmental thoracic circuit of the central pattern generator.
Employing phase reduction, we collapse the network of bursting neurons represented by 24 ordinary
differential equations to 6 coupled nonlinear phase oscillators, each corresponding to a subnetwork of
neurons controlling one leg. Assuming that the left and right legs maintain constant phase differences
(contralateral symmetry), we reduce from 6 equations to 3, allowing analysis of a dynamical system
with 2 phase differences defined on a torus. We show that bifurcations occur from multiple stable
tetrapod gaits to a unique stable tripod gait as speed increases. Finally, we consider gait transitions
in two sets of data fitted to freely walking fruit flies.

Key words. bifurcation, bursting neurons, coupling functions, insect gaits, phase reduction, phase response
curves, stability
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1. Introduction: Idealized insect gaits. Legged locomotion involves alternating stance
and swing phases in which legs respectively provide thrust to move the body and are then
raised and repositioned for the next stance phase. Insects, having six legs, are capable of com-
plex walking gaits in which various combinations of legs can be simultaneously in stance and
swing. However, when walking on level ground, their locomotive behavior can be characterized
by the following kinematic rules (see [1, page 104] and [2]).

1. A wave of protractions (swing) runs forward from posterior to anterior legs.
2. Contralateral legs of the same segment alternate approximately in antiphase.

In addition, in [1], Wilson assumed the following:
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3. Swing duration remains approximately constant as speed increases.
4. Stance (retraction) duration decreases as speed increases.

Rules 3 and 4 have been documented in fruit flies by Mendes et al. [3].
In the slow metachronal gait, the hind, middle, and front legs on one side swing in suc-

cession followed by those on the other side; at most one leg is in swing at any time. As speed
increases, in view of rules 3 and 4, the swing phases of contralateral pairs of legs begin to over-
lap, so that two legs swing while four legs are in stance in a tetrapod gait, as observed for fruit
flies in [3]. At the highest speeds the hind and front legs on one side swing together with the
contralateral middle leg while their contralateral partners provide support in an alternating
tripod gait which is typical for insects at high speeds. See [1, Figure 1].

Motivated by observations and data from fruit flies, which use both tetrapod and tripod
gaits, and from cockroaches, which use tripod gaits [4], and stick insects, which use tetra-
pod gaits [5], our goal is to understand the transition between these gaits and their stability
properties analytically. Our dynamical analysis provides a mechanism that supplements the
kinematic description given above. This will allow us to distinguish tetrapod, tripod, and tran-
sition gaits precisely and ultimately to obtain rigorous results characterizing their existence
and stability. For gait transitions in vertebrate animals, see, e.g., [6, 7].

In [4], a 6-oscillator model, first proposed in [8], was used to fit data from freely running
cockroaches that use tripod gaits over much of their speed range [9]. Here, in addition to the
tripod gait, we consider tetrapod gaits and study the transitions among them and tripod gaits.
We derive a 6-oscillator model from a network of 6 bursting neurons with inhibitory nearest
neighbor coupling. After showing numerically that it can produce multiple tetrapod gaits as
well as a tripod gait, we appeal to the methods of phase reduction and bifurcation theory
to study gait transitions. Our coupling assumption is supported by studies of freely running
cockroaches in [4], in which various architectures were compared and inhibitory nearest neigh-
bor coupling provided the best fits to data according to Akaike and Bayesian Information
Criteria (AIC and BIC). The inhibitory assumption is motivated by the fact that neighboring
oscillators’ solutions are out of phase [10].

Phase reduction is also used by Yeldesbay, Tóth, and Daun in [11] to model stick insect
locomotion and display gait transitions. Their reduced model contains 3 ipsilateral legs and
has a cyclical coupling architecture, with a connection from hind to front segments. Here we
show that the nearest neighbor architecture also produces such gait transitions.

Our main contributions are as follows. First, we confirm that speed changes in the burst-
ing neuron model can be achieved by parameter variations (cf. [8, 12]) and we numerically
illustrate that increasing speed leads to transition from tetrapod to tripod gaits. We then
reduce the bursting neuron model from 24 ordinary differential equations (ODEs) to 2 phase
difference equations and characterize coupling functions that produce these gait transitions.
We illustrate them via analysis and simulations of the 24 ODE model and the phase difference
equations, using parameters derived from fruit fly data, thereby showing biological feasibility
of the mechanisms.

This paper is organized as follows. In section 2, we review the ion-channel model for
bursting neurons which was developed in [8, 12], study the influence of the parameters on
speed, and demonstrate gait transitions numerically. In section 3, we describe the derivation
of reduced phase equations and define tetrapod, tripod, and transition gaits. At any fixed
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speed, we assume constant phase differences between left- and right-hand oscillators, so that
an ipsilateral network of 3 oscillators determines the dynamics of all 6 legs. We further reduce
to a pair of phase-difference equations defined on a 2-dimensional torus. In section 4 we
prove the existence of tetrapod, tripod, and transition gaits under specific conditions on the
intersegmental coupling strengths and establish their stability types.

In section 5 we apply the results of section 4 to the bursting neuron model. We show that
the form of the coupling functions, which depend upon speed, imply the existence of transition
solutions connecting tetrapod gaits to the tripod gait. In section 6 we characterize a class of
explicit coupling functions that exhibit transitions from tetrapod gaits to the tripod gait. As
an example, we analyze phase-difference equations, using coupling functions approximated by
Fourier series, and derive bifurcation diagrams via branch-following methods. In section 7 we
describe gait transitions in a phase model with coupling strengths estimated by fitting data
from freely running fruit flies, and we show that such transitions occur even when coupling
strengths are far from the special cases studied in sections 4 and 5. We conclude in section 8.
Appendix A follows, wherein we recall details of the phase reduction process, phase response
curves, and averaging used in section 3.1.

2. Bursting neuron model. In this section we define the bursting neuron model, describe
its behavior, and illustrate the gait transitions in a system of 24 ODEs representing 6 coupled
bursting neurons.

2.1. A single neuron. Central pattern generators (CPGs) in insects are networks of neu-
rons in the thoracic and other ganglia that produce rhythmic motor patterns such as walking,
swimming, and flying. CPGs for rhythmic movements are reviewed in, e.g., [13, 14]. In this
work, we employ a bursting neuron model which was developed in [12] to model the local neu-
ral network driving each leg. This system includes a fast nonlinear current, e.g., ICa, a slower
potassium current IK , an additional very slow current IKS , and a linear leakage current IL.
The following system of ODEs describes the bursting neuron model and its synaptic output
s(t):

Cv̇ = −{ICa(v) + IK(v,m) + IKS(v, w) + IL(v)}+ Iext,(1a)

ṁ =
ε

τm(v)
[m∞(v)−m],(1b)

ẇ =
δ

τw(v)
[w∞(v)− w],(1c)

ṡ =
1

τs
[s∞(v)(1− s)− s],(1d)

where the ionic currents are of the forms

(2)
ICa(v) = ḡCan∞(v)(v − ECa), IK(v,m) = ḡK m (v − EK),

IKS(v, w) = ḡKSw (v − EKS), IL(v) = ḡL(v − EL).
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The steady state gating variables associated with ion channels and their time scales take the
forms

(3)

m∞(v) =
1

1 + e−2kK(v−vK)
, w∞(v) =

1

1 + e−2kKS(v−vKS)
,

n∞(v) =
1

1 + e−2kCa(v−vCa)
, s∞(v) =

a

1 + e−2ks(v−Epres )
,

and

(4) τm(v) = sech (kK(v − vK)), τw(v) = sech (kKS(v − vKS)).

Here the variable s represents the effect of neurotransmitter released at the synapse and the
constant parameter τs specifies the synaptic time scale. The constant parameters are generally
fixed as specified in Table 1. Most of the parameter values are taken from [12], but some of
our notations are different.

Table 1
The constant parameters in the bursting neuron model, as δ (first row) and Iext (second row) vary.

δ Iext ḡCa ḡK ḡKS ḡL ḡsyn ECa EK EKS EL Eposts

δ control varies 35.6 4.4 9.0 0.19 2.0 0.01 120 -80 -80 -60 -70

Iext control 0.027 varies 4.4 9.0 0.5 2.0 0.01 120 -80 -80 -60 -70

kCa kK kKS ks vCa vK vKS Epres a C ε τs

δ control 0.056 0.1 0.8 0.11 -1.2 2 -27 2 55.56 1.2 4.9 5.56

Iext control 0.056 0.1 0.8 0.11 -1.2 2 -26 2 444.48 1.2 5.0 5.56

Figure 1 (first row) shows the solution of (1) for the parameters specified in the first row of
Table 1, and for δ = 0.02. Figure 1 (second row) shows the solution of (1) for the parameters
specified in the second row of Table 1, and for Iext = 36.5. We solved the equation using a
fourth order explicit Runge–Kutta method in a custom-written code, with fixed time step,
0.001 ms, and ran the simulation for 1000 ms with initial conditions

v(0) = −70, m(0) = −10, w(0) = −4, s(0) = 2.

The periodic orbit in (v,m,w) space contains a sequence of spikes (a burst) followed by a
quiescent phase, which correspond respectively to the swing and stance phases of one leg. The
burst from the CPG inhibits depressor motoneurons, allowing the swing leg to lift from the
ground [8, Figure 2], [10, Figure 11] (see also [15, 16]). We denote the period of the periodic
orbit by T , i.e., it takes T time units (ms here) for an insect to complete the cycle of each leg.
The number of steps completed by one leg per unit of time is the stepping frequency and is
equal to ω = 2π/T . The period of the limit cycles shown in Figure 1 are approximately 202
ms and 88.57 ms, and their frequencies are approximately 4.95 Hz and 11.29 Hz, respectively.
The swing phase (SW ) is the duration of one burst and represents the time when the leg is
off the ground, and the stance phase (ST ) is the duration of the quiescence in each periodic
orbit and represents the time when the leg is on the ground. Hence, SW + ST = T . The
swing duty cycle, denoted by DC, is equal to SW/T . Note that an insect decreases its speed
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Figure 1. First row: A solution of (1) for the parameters in the first row of Table 1, and for δ = 0.02.
Second row: A solution of (1) for the parameters in the second row of Table 1, and for Iext = 36.5. Each case
is shown for one period of the bursting process.

primarily by decreasing its stance phase duration (see the data in [3], and the rules from [1],
given in the introduction).

In what follows, we show the effect of two parameters in the bursting neuron model, δ
and Iext, on period, swing, stance, and duty cycle. We will see that these parameters have
a major effect on speed; i.e., when either δ or Iext increases, the period of the periodic orbit
decreases, primarily by decreasing stance phase duration, and so the insect’s speed increases.
We consider the effects of each parameter separately but in parallel. As we study the effect
of δ (resp., Iext), we fix all other parameters as in the first (resp., second) row of Table 1. We
let δ vary in the range [δ1, δ2] = [0.0097, 0.04] and Iext vary in the range [I1, I2] = [35.65, 37.7].
These ranges produce bursting periods consistent with stepping frequencies, and hence speeds,
for the insects of interest; they also encompass bifurcations that we shall study.

2.1.1. Effect of the slowest time scale δ and external input Iext on stepping frequency.
Figure 2 (first row) shows the frequency, duty cycle, stance, and swing as functions of δ. We
computed these quantities by numerically solving the bursting neuron model (1) for a fixed
set of parameters (first row of Table 1) as δ varies. As the figure depicts, as δ increases from
0.0097 to 0.04, stepping frequency increases from approximately 2.66 Hz to 8.59 Hz, i.e., the
speed of the animal increases. Also, note that the stance and swing phase durations decrease,
while the duty cycle remains approximately constant.

We repeat the scenario with fixed parameters in the second row of Table 1 and varying
Iext. Figure 2 (second row) shows frequency, duty cycle, stance, and swing as functions of
Iext. As Iext increases from 35.65 to 37.7, stepping frequency increases from approximately
6.9 Hz to 14.9 Hz. Now, the duty cycle increases slightly, in contrast to Figure 2 (first row),
while the swing duration remains approximately constant. This is closer to the rules given in
section 1.
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Figure 2. The effect of δ (first row) and Iext (second row) on frequency, duty cycle, stance, and swing in
a single uncoupled bursting neuron model. See Table 1 for parameters.

For the rest of the paper, we use the symbol ξ to denote the speed parameter δ or Iext. We
note that it is more realistic to use Iext as speed parameter, for the following three reasons.
1. Input currents provide a more biologically relevant control mechanism [17].
2. Swing duration remains approximately constant, as proposed in rule 3 of section 1, while
δ affects burst duration [12].

3. The frequency range obtained is closer to that seen in fruit fly [3] and cockroach data [4].

2

3

4

5

6

c1

c2

c3

c4c4 c5c5

c6c6 c7c7

1

Figure 3. Network of CPGs.

2.2. Weakly interconnected neurons. We now consider a network of six mutually inhibit-
ing units, representing the hemisegmental CPG networks contained in the insect’s thorax, as
shown in Figure 3. We assume that inhibitory coupling is achieved via synapses that produce
negative postsynaptic currents. The synapse variable s enters the postsynaptic cell in (1a) as
an additional term, Isyn,

(5) Cv̇i = −{ICa + IK + IKS + IL}+ Iext + Isyn ,
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where

(6) Isyn =
∑
j∈Ni

Isyn(vi, sj) =
∑
j∈Ni

−c̄jiḡsynsj
(
vi − Eposts

)
,

ḡsyn denotes the synaptic strength, and Ni denotes the set of the nodes adjacent to node i.
The multiplicative factor c̄ji accounts for the fact that multiple bursting neurons are inter-
connected in the real animals, and −c̄jiḡsyn represents an overall coupling strength between
hemisegments. Following [4] we assume contralateral symmetry and include only nearest
neighbor coupling, so that there are three contralateral coupling strengths c1, c2, c3 and four
ipsilateral coupling strengths c4, c5, c6, and c7; see Figure 3. For example, c̄21 = c5, c̄41 = c1,
etc. We choose reversal potentials Eposts that make all synaptic connections inhibitory (see
Table 1); this implies that the ci’s are positive.

A system of 24 equations describes the dynamics of the 6 coupled cells in the network as
shown in Figure 3. We assume that each cell, which is governed by (1), represents one leg of
the insect. Cells 1, 2, and 3 represent right front, middle, and hind legs, and cells 4, 5, and
6 represent left front, middle, and hind legs, respectively. For example, assuming that each
cell is described by (vi,mi, wi, si)

T , i = 1, . . . , 6, the synapses from presynaptic cells 2 and 4,
denoted by s2 and s4, respectively, enter the postsynaptic cell 1. The following system of 4
ODEs describes the dynamics of cell 1 when connected to cells 2 and 4:

(7)

Cv̇1 = −{ICa(v1) + IK(v1,m1) + IKS(v1, w1) + IL(v1)}+ Iext

− c1ḡsyns4(v1 − Eposts )− c5ḡsyns2(v1 − Eposts ),

ṁ1 =
ε

τm(v1)
[m∞(v1)−m1],

ẇ1 =
δ

τw(v1)
[w∞(v1)− w1],

ṡ1 =
1

τs
[s∞(v1)(1− s1)− s1],

where c1 and c5 are the coupling strengths from cell 4 and cell 2 to cell 1, respectively. Note
that we assume contralateral symmetry, so the coupling strength from cell 1 to cell 4 is equal
to the coupling strength from cell 4 to cell 1, etc. Five sets, each of analogous ODEs, describe
the dynamics of the other five legs. Moreover, unlike the front and hind legs, the middle leg
cells are connected to three neighbors; see Figure 3. Thus, the full model is described by 24
ODEs.

This 6-bursting neuron model was used to drive agonist-antagonist muscle pairs in a
neuromechanical model with jointed legs that reproduced the dynamics of freely running
cockroaches [18] (also see [19]). These papers and subsequent phase-reduced models [20, 4]
support our belief that the bursting neuron model is capable of producing realistic inputs to
muscles in insects.

2.3. Tetrapod and tripod gaits. In this section, we show numerically the gait transition
from tetrapod to tripod as the speed parameter ξ increases. An insect is said to move in
a tetrapod gait if at each step two legs swing in synchrony while the remaining four are in
stance. The following four patterns are possible.
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1. Forward right tetrapod: (R2, L3), (R1, L2), (R3, L1).
2. Forward left tetrapod: (R2, L1), (R1, L3), (R3, L2).
3. Backward right tetrapod: (R2, L3), (R3, L1), (R1, L2).
4. Backward left tetrapod: (R2, L1), (R3, L2), (R1, L3).

Here R1, R2, R3 denote the right front, middle, and hind legs, and L1, L2, L3 denote the
left front, middle, and hind legs, respectively. The legs in each pair swing simultaneously,
and touchdown of the legs in each pair coincides with lift-off of the next pair. For example,
in (R1, L3), the right front leg and left hind leg are in synchrony, etc. Figure 4 (left) shows
cartoons of an insect executing one cycle of the forward and backward tetrapod gaits, in which
each leg completes one swing and one stance phase.Tetra_right_forward_cartoon

R2

R1

R3L3

L2

L1

L3

L2

L1

R2

R1

R3

Tetra_left_forward_cartoon

R2

R3

R1

R3

R2

R1

L3

L2

L1

L3

L2

L1

Tetra_right_backward_cartoon

R2

R1

R3L3

L2

L1

L3

L2

L1

R2

R1

R3

Tetra_left_backward_cartoon

R2

R3

R1

R3

R2

R1

L3

L2

L1

L3

L2

L1

Tripod_cartoon

R2

R1

R3L3

L2

L1

L3

L2

L1

R2

R1

R3

Figure 4. Left to right: One cycle of forward right, forward left, backward right, and backward left tetrapod
gaits and a tripod gait are shown. The diagonal lines connect legs that swing together; arrows indicate forward
(resp., backward) waves in tetrapods. The tripod is a standing wave.

In forward gaits, a forward wave of swing phases from hind to front legs causes a movement,
while in backward gaits, the swing phases pass from front to hind legs. In right gaits, the right
legs lead while in left gaits the left legs lead. We will exhibit a gait transition from forward
right tetrapod to tripod as Iext varies, and a gait transition from forward left tetrapod to
tripod as δ varies. Backward gaits have not been observed in forward walking; however, see
Figure 28 and the corresponding discussion in the text.

An insect is said to move in a tripod gait (also called alternating tripod) when the following
triplets of legs swing simultaneously, and touchdown of each triplet coincides with lift off of
the other:

(R1, L2, R3), (L1, R2, L3).

Figure 4 (right) shows a cartoon of an insect executing one cycle of the tripod gait, in which
each leg completes one swing and one stance phase.

Figure 5 depicts a gait transition from a forward right tetrapod to a tripod in the bursting
neuron model as Iext increases (first column) and from a forward left tetrapod to a tripod as
δ increases (second column), and for a fixed set of parameters, initial conditions, and coupling
strengths ci as given below. Figure 6 shows the corresponding voltages. In the simulations
shown in first column of Figure 5 (as Iext varies), the coupling strengths ci are equal to

(8) c1 = c2 = c3 = c4 = 1, c5 = c6 = 3, c7 = 2,

the 24 initial conditions for the 24 ODEs are equal to
(9)
v1(0) = −31.93, v2(0) = −38.55, v3(0) = −23.83, v4(0) = −24.12, v5(0) = −31.93, v6(0) = −38.55,
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634 ZAHRA AMINZARE, VAIBHAV SRIVASTAVA, AND PHILIP HOLMES

Figure 5. Interconnected bursting neuron model: Gait transitions from forward right tetrapod to tripod as
Iext increases, Iext = 35.9, 36.2, 37.0 (left column, top to bottom), and from forward left tetrapod to tripod as δ
increases, δ = 0.01, 0.019, 0.03 (right column, top to bottom). Width of horizontal bars indicate swing durations.
Note the transitional gaits with partial overlap of swing durations in the middle row. The approximate phase
differences are given in Table 2; see section 3.2 below.

and for i = 1, . . . , 6, mi, wi, and si take their steady state values:

(10) mi(0) = m∞(vi(0)), wi(0) = w∞(vi(0)), si(0) =
s∞(vi(0))

s∞(vi(0)) + 1
.

We computed the solutions up to time t = 4000 ms but only show the time window [3750, 4000]
after transients have died out. In the simulations shown in second column of Figure 5 (as δ
varies), the coupling strengths ci are equal to

(11) c1 = c2 = c3 = 0.5, c4 = c7 = 1, c5 = c6 = 2,

the 24 initial conditions for the 24 ODEs are equal to

(12) v1(0) = −10, v2(0) = −40, v3(0) = −30, v4(0) = −40, v5(0) = 5, v6(0) = 20,

and for i = 1, . . . , 6, mi, wi, and si take their steady state values as in (10). We computed
solutions up to time t = 5000 ms but only show the time window [4000, 5000] after transients
have died out.

Our goal is to show that, for the fixed set of parameters in Table 1, and appropriate
coupling strengths ci, as the speed parameter ξ, Iext, or δ increases, a gait transition from
(forward) tetrapod to tripod gait occurs. We will provide appropriate conditions on the ci’s
in section 4. To reach our goal we first need to define the tetrapod and tripod gaits mathe-
matically. To this end, in the following section, we reduce the interconnected bursting neuron
model to 6 interconnected phase oscillators, each describing one leg’s cyclical movement.
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Figure 6. The corresponding voltages for the gaits presented in Figure 5. Color code matches that for legs
in Figure 5. Note that some traces are hidden due to in-phase bursts.

3. A phase oscillator model. In this section, we apply the theory of weakly coupled
oscillators to the coupled bursting neuron models to reduce the 24 ODEs to 6 phase oscillator
equations. Details are relegated to the Appendix, section A. For a comprehensive review of
oscillatory dynamics in neuroscience with many references, see [21].

3.1. Phase equations for a pair of weakly coupled oscillators. Let the ODE

(13) Ẋ = f(X), X ∈ Rn,

describe the dynamics of a single neuron. In our model, X = (v,m,w, s)T and f(X) is as the
right-hand side of equations (1). Assume that (13) has an attracting hyperbolic limit cycle
Γ = Γ(t), with period T and frequency ω = 2π/T .

Now consider the system of weakly coupled identical neurons

(14)
Ẋ1 = f(X1) + εg(X1, X2),

Ẋ2 = f(X2) + εg(X2, X1),

where 0 < ε � 1 is the coupling strength and g is the coupling function. The phase of a
neuron, denoted by φ, is the time that has elapsed as its state moves around Γ, starting from
an arbitrary reference point in the cycle. For each neuron, the phase equation is

(15)
dφi
dt

(t) = ω + εH(φj(t)− φi(t)),

where

H = H(θ) =
1

T

∫ T

0
Z(Γ(t̃)) · g(Γ(t̃),Γ(t̃+ θ)) dt̃
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is the coupling function: the convolution of the synaptic current input to the neuron via
coupling g and the neuron’s infinitesimal phase response curve (iPRC), Z. Under the weak
coupling assumption the iPRC captures the local dynamics in a neighborhood of Γ [22]. For
more details see Appendix A.

In the interconnected bursting neuron model, the coupling function g is defined as follows:

(16) g(xi, xj) =
(
−ḡsynsj

(
vi − Eposts

)
, 0, 0, 0

)T
,

where xi = (vi,mi, wi, si)
T represents a single neuron (cf. (5)–(7)). Therefore, Z · g =

−Zv ḡsynsj(vi − Eposts ), where Zv is the iPRC in the direction of voltage (Figures 7 and 8
(first rows)), and the coupling function, denoted by HBN , takes the following form:

(17) HBN (θ) = − ḡsyn
T

∫ T

0
Zv(Γ(t̃))

(
vi(Γ(t̃))− Eposts

)
sj
(
Γ(t̃+ θ)

)
dt̃.

In Figures 7 and 8 (second rows), we show the coupling functions HBN derived in (17) for two
different values of δ and Iext, respectively. Note that HBN (θ) < 0 over most of its range, and
in particular over the interval [1/3, 2/3] corresponding to tetrapod and tripod gaits. Here and
for the remainder of the paper, coupling functions are plotted with domain [0, 1].

Similar iPRCs to ours have been obtained for the nonspiking half center oscillator model
used by Yeldesbay, Tóth, and Daun [11], apart from in the region of the burst (personal
communication). See also [23, Figure 3].

Figure 7. First row: iPRC (in the direction of v) for δ = 0.0097 (left) and δ = 0.03 (right). Second row:
The coupling functions HBN (θ) for δ = 0.0097 (left) and δ = 0.03 (right). Phase θ = 0 is defined to be the
onset of the burst.

3.2. Phase equations for six weakly coupled neurons. We now apply the techniques from
section 3.1 to six coupled neurons and derive the 6-coupled phase oscillator model via phase
reduction. We assume that all six hemisegmental units have the same intrinsic (uncoupled)
frequency ω = 2π/T and that the coupling functions Hi are all identical (Hi = H) and 2π-
periodic. Recalling (15) for a pair of neurons, this leads to the following system of ODEs
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Figure 8. First row: iPRC (in the direction of v) for Iext = 35.9 (left) and Iext = 37.1 (right). Second
row: The coupling functions HBN (θ) for Iext = 35.9 (left) and Iext = 37.1 (right). Phase θ = 0 is defined to
be the onset of the burst.

describing the six legs’ motions:

(18)

φ̇1 = ω + c1H(φ4 − φ1) + c5H(φ2 − φ1),

φ̇2 = ω + c2H(φ5 − φ2) + c4H(φ1 − φ2) + c7H(φ3 − φ2),

φ̇3 = ω + c3H(φ6 − φ3) + c6H(φ2 − φ3),

φ̇4 = ω + c1H(φ1 − φ4) + c5H(φ5 − φ4),

φ̇5 = ω + c2H(φ2 − φ5) + c4H(φ4 − φ5) + c7H(φ6 − φ5),

φ̇6 = ω + c3H(φ3 − φ6) + c6H(φ5 − φ6).

Oscillators 1, 2, and 3 drive the front, middle, and hind legs on the right with phases φ1, φ2,
and φ3, and oscillators 4, 5, and 6 drive the analogous legs on the left with phases φ4, φ5,
and φ6 (φi ∈ [0, 2π)). Note that the derivation of the phase reduced system in section 3.1
assumes that the coupling strength ε is small, implying that the product of the coefficients
ci and H in (18) should be small compared to the uncoupled frequency ω. Since H includes
ḡsyn (equation (17)) and ḡsyn = 0.01 (Table 1), we have H = O(0.1) (Figures 7 and 8). In the
examples studied below we will take ci = O(1).

Next, we provide sufficient conditions such that an insect employs a tetrapod gait at low
speeds and a tripod gait at high speeds. We first define idealized tetrapod and tripod gaits
mathematically.

Definition 1 (tetrapod and tripod gaits). We define four versions of tetrapod gaits as fol-
lows. Each gait corresponds to a 2π-periodic solution of (18). In each version two legs swing
simultaneously in the sequences indicated in braces, and all six oscillators share the common
coupled stepping frequency ω̂. The vectors AFR, AFL, ABR, ABL, and ATri describe the time
dependent phases φ1, . . . , φ6 measured in radians.
1. Forward right tetrapod gait AFR, {(R2, L3), (R1, L2), (R3, L1)}, corresponds to

AFR :=

(
ω̂t+

4π

3
, ω̂t, ω̂t+

2π

3
; ω̂t+

2π

3
, ω̂t+

4π

3
, ω̂t

)
.
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2. Forward left tetrapod gait AFL, {(R2, L1), (R1, L3), (R3, L2)}, corresponds to

AFL :=

(
ω̂t+

4π

3
, ω̂t, ω̂t+

2π

3
; ω̂t, ω̂t+

2π

3
, ω̂t+

4π

3

)
.

3. Backward right tetrapod gait ABR, {(R2, L3), (R3, L1), (R1, L2)}, corresponds to

ABR :=

(
ω̂t+

2π

3
, ω̂t, ω̂t+

4π

3
; ω̂t+

4π

3
, ω̂t+

2π

3
, ω̂t

)
.

4. Backward left tetrapod gait ABL, {(R2, L1), (R3, L2), (R1, L3)}, corresponds to

ABL :=

(
ω̂t+

2π

3
, ω̂t, ω̂t+

4π

3
; ω̂t, ω̂t+

4π

3
, ω̂t+

2π

3

)
.

Finally, the tripod gait ATri, {(R1, L2, R3), (R2, L1, L3)}, corresponds to

ATri := (ω̂t+ π, ω̂t, ω̂t+ π; ω̂t, ω̂t+ π, ω̂t) .

The frequency ω̂ will be determined later in Proposition 5.

Note that in both tetrapod and tripod gaits, the phase difference between the left and
right legs in each segment is constant and is equal to either 2π/3 or 4π/3 (in tetrapod gaits)
or π (in tripod gaits). Following the kinematic rules in section 1, we focus on forward gaits.

We would like to show that equations (18) admit a stable solution at AFR or AFL cor-
responding to a forward right or left tetrapod gait, respectively, when the speed parameter
ξ (representing either δ or Iext) is “small,” and a stable solution at ATri corresponding to a
tripod gait, when the speed parameter ξ is “large.” Since we are interested in studying the
effect of the speed parameter ξ on gait transition, we let the coupling function H and the
frequency ω depend on ξ and write H = H(φ; ξ) and ω = ω(ξ).

Definition 2 (transition gaits). For any fixed number η ∈ [0, π/3], the forward right and
forward left transition gaits, AFR(η) and AFL(η), respectively, are as follows:

AFR(η) :=

(
ω̂t+

4π

3
− η, ω̂t, ω̂t+

2π

3
+ η; ω̂t+

2π

3
− 2η, ω̂t+

4π

3
− η, ω̂t

)
,(19a)

AFL(η) :=

(
ω̂t+

4π

3
− η, ω̂t, ω̂t+

2π

3
+ η; ω̂t, ω̂t+

2π

3
+ η, ω̂t+

4π

3
+ 2η

)
.(19b)

We call AFR(η) and AFL(η) “transition gaits” since as η = η(ξ) varies from 0 to π/3,
AFR(η) (resp., AFL(η)) transitions from the forward right (resp., left) tetrapod gait to the
tripod gait. For η = 0, AFR(0) = AFR corresponds to the forward right tetrapod gait, and
AFL(0) = AFL corresponds to the forward left tetrapod gait. Also for η = π/3, AFR(π/3) =
AFL(π/3) = ATri corresponds to the tripod gait. In addition, the phase differences between
the left and right legs (φ4−φ1, φ5−φ2, φ6−φ3) are constant and equal to 4π/3−η in AFR(η)
and 2π/3 + η in AFL(η). This value is equal to 4π/3 (resp., 2π/3) when η = 0, as in the
forward right (resp., left) tetrapod gait, and is equal to π when η = π/3, as in the tripod
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gait. This definition is motivated by our simulations of the 24 ODE interconnected bursting
neuron model, in which a single speed parameter ξ is changed; see Figure 5 above.

We further assume that the phase differences between the left and right legs are equal to
the steady state phase differences in AFR(η) or AFL(η) (later we will see that there are no
differences between these two choices), i.e., we assume that for a fixed η, and for any i = 1, 2, 3,

(20) φi+3 = φi + φ̄(η),

where φ̄(η) = 4π/3−η or φ̄(η) = 2π/3+η. For steady states, this assumption is supported by
experiments for tripod gaits [4], where φ̄(η) = π, and by simulations for tripod and tetrapod
gaits in the bursting neuron model, Figures 5 and 6. The approximate phase differences,
which are consistent with Definitions 1 and 2, are shown in Table 2.

We make a further simplifying assumption that the steady state contralateral phase dif-
ferences remain constant for all t. Thus, assuming that the phase difference between the
left and right legs φi+3 − φi = φ̄(η) = 4π/3 − η or φ̄(η) = 2π/3 + η, and noting that since
H = H(φ; ξ) is 2π-periodic in its first argument, φi − φi+3 = −φ̄(η) = 2π/3 + η or 4π/3 − η
(recall that −4π/3 = 2π/3 mod 2π), we can rewrite (18) for the forward right transition gait
AFR(η) as follows. A similar equation is obtained for AFL(η). To simplify the notations, for
the remainder of the paper, all the phases and the coupling functions are considered in the
domain of [0, 1] instead of [0, 2π].

φ̇1 = ω(ξ) + c1H

(
2

3
− η; ξ

)
+ c5H(φ2 − φ1; ξ),(21a)

φ̇2 = ω(ξ) + c2H

(
2

3
− η; ξ

)
+ c4H(φ1 − φ2; ξ) + c7H(φ3 − φ2; ξ),(21b)

φ̇3 = ω(ξ) + c3H

(
2

3
− η; ξ

)
+ c6H(φ2 − φ3; ξ),(21c)

φ̇4 = ω(ξ) + c1H

(
1

3
+ η; ξ

)
+ c5H(φ5 − φ4; ξ),(21d)

φ̇5 = ω(ξ) + c2H

(
1

3
+ η; ξ

)
+ c4H(φ4 − φ5; ξ) + c7H(φ6 − φ5; ξ),(21e)

φ̇6 = ω(ξ) + c3H

(
1

3
+ η; ξ

)
+ c6H(φ5 − φ6; ξ).(21f)

Our goal is to provide sufficient conditions on the coupling function H and the coupling
strengths ci that guarantee that for any η ∈ [0, 1/6], AFR(η) is a stable solution of (21). To
this end, in the following section we reduce the 6 equations (21a)–(21f) to 2 equations on a
2-torus. The coupling strengths ci may also depend on the speed parameter ξ, but we shall
keep the ci’s constant until section 7, where we analyze fruit fly data fitted at different speeds.

3.3. Phase differences model. In this section, the goal is to reduce the 6 equations (21a)–
(21f) to 2 equations on a 2-torus. Although we are interested in gait transitions in the bursting
neuron model and in the phase reduction equations derived from it, we prove our results for
a more general case. To this end, we assume the following condition for the coupling function
H.
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Table 2
Approximate phase differences of gaits shown in Figure 5. For example, as Iext varies, in the forward

right transition gait, R2 and L3 swing together, having the same phases φ6(t0) ≈ φ2(t0), at initial time t0.
After 46 ms, R1 and L2 swing together, so they have the same phases which are approximately equal to the

phase of R2 at t0, mod 2π: φ1(t0 + 46) − φ2(t0) = ω̂(46) + 4π/3 − η
mod 2π
≈ 0. Next, R3 and then L1 swing:

φ3(t0 + 58)
mod 2π
≈ φ2(t0), φ4(t0 + 90)

mod 2π
≈ φ2(t0). Note that the time differences are computed from burst onsets.

These numbers multiplied by ω̂ = 2π/T give phase differences consistent with the definitions, e.g., 46 ≈ T/3+ η̄

becomes 2.75 ≈ (T/3 + η̄) ∗ 2π/T
mod 2π

= 2π/3 + η, where η
mod 2π

= (2π/T )η̄ ≈ 0.66.

Iext varies, Figure 5 (left)

Tetrapod gait T ≈ 132
φ6(t0) ≈ φ2(t0)

φ1(t0 + 43) ≈ φ5(t0 + 43)
mod 2π
≈ φ2(t0), 43 ≈ T/3

φ3(t0 + 88) ≈ φ4(t0 + 88)
mod 2π
≈ φ2(t0), 88 ≈ 2T/3

Transition gait T ≈ 105, η̄ ≈ 11
φ6(t0) ≈ φ2(t0)

φ1(t0 + 46) ≈ φ5(t0 + 46)
mod 2π
≈ φ2(t0), 46 ≈ T/3 + η̄

φ3(t0 + 58)
mod 2π
≈ φ2(t0), 58 ≈ 2T/3− η̄

φ4(t0 + 90)
mod 2π
≈ φ2(t0), 90 ≈ 2T/3 + 2η̄

Tripod gait T ≈ 78
φ2(t0) ≈ φ4(t0) ≈ φ6(t0), φ1(t0 + 38.7) ≈ φ3(t0 + 38.7) ≈ φ5(t0 + 38.7)

φ1(t0 + 38.7)
mod 2π
≈ φ2(t0), 38.7 ≈ T/2

δ varies, Figure 5 (right)

Tetrapod gait T ≈ 382
φ4(t0) ≈ φ2(t0)

φ1(t0 + 123) ≈ φ6(t0 + 123)
mod 2π
≈ φ2(t0), 123 ≈ T/3

φ3(t0 + 265) ≈ φ5(t0 + 265)
mod 2π
≈ φ2(t0), 265 ≈ 2T/3

Transition gait T ≈ 216, η̄ ≈ 17
φ4(t0) ≈ φ2(t0)

φ6(t0 + 33)
mod 2π
≈ φ2(t0), 33 ≈ T/3− 2η̄

φ1(t0 + 89)
mod 2π
≈ φ2(t0), 89 ≈ T/3 + η̄

φ3(t0 + 125) ≈ φ5(t0 + 125)
mod 2π
≈ φ2(t0), 125 ≈ 2T/3− η̄

Tripod gait T ≈ 147
φ2(t0) ≈ φ4(t0) ≈ φ6(t0), φ1(t0 + 73.0) ≈ φ3(t0 + 73.0) ≈ φ5(t0 + 73.0)

φ1(t0 + 73)
mod 2π
≈ φ2(t0), 73 ≈ T/2

Assumption 1. Assume that H = H(θ; ξ) is a differentiable function, defined on R×[ξ1, ξ2],
which is 1-periodic on its first argument and has the following property. For any fixed ξ ∈
[ξ1, ξ2],

(22) H

(
2

3
− η; ξ

)
= H

(
1

3
+ η; ξ

)
has a unique solution η(ξ) such that η = η(ξ) : [ξ1, ξ2]→ [0, 1/6] is an onto and nondecreasing
function. Note that (22) is also trivially satisfied by the constant solution η = 1/6.
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Assumption 1 defines a class of coupling functions that exhibit the gait transitions studied
in this paper. The coupling functions HBN derived from the bursting neuron model satisfy and
motivate this assumption (see Figures 7 and 8) and section 5 below. For the rest of the paper,
we assume that the coupling function H satisfies Assumption 1. Moreover, in Proposition 11,
section 6, we provide sufficient conditions for Assumption 1 to hold for more general classes
of functions.

Using (20) and (22), (21) can be reduced to the following 3 equations describing the right
legs’ motions:

φ̇1 = ω(ξ) + c1H

(
2

3
− η; ξ

)
+ c5H(φ2 − φ1; ξ),(23a)

φ̇2 = ω(ξ) + c2H

(
2

3
− η; ξ

)
+ c4H(φ1 − φ2; ξ) + c7H(φ3 − φ2; ξ),(23b)

φ̇3 = ω(ξ) + c3H

(
2

3
− η; ξ

)
+ c6H(φ2 − φ3; ξ).(23c)

Because only phase differences appear in the vector field, we may define

θ1 := φ1 − φ2 and θ2 := φ3 − φ2,

so that the following equations describe the dynamics of θ1 and θ2:

θ̇1 = (c1 − c2)H

(
2

3
− η; ξ

)
+ c5H(−θ1; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ),(24a)

θ̇2 = (c3 − c2)H

(
2

3
− η; ξ

)
+ c6H(−θ2; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ).(24b)

Note that equations (24) are 1-periodic in both variables, i.e., (θ1, θ2) ∈ T2, where T2 is a
2-torus.

In (24), the tripod gait ATri corresponds to the fixed point (1/2, 1/2), the forward tetrapod
gaits, AFR and AFL, correspond to the fixed point (2/3, 1/3), and the transition gaits, AFR(η)
and AFL(η), correspond to (2/3−η, 1/3+η). Note that since AFR(η) and AFL(η) correspond
to the same fixed point on the torus, we may assume the contralateral phase differences to be
equal to φi+3−φi = 2/3−η or 1/3+η. See [24] for another example of conditions on coupling
functions that produce specific phase differences.

In the following sections we will address existence and stability of these fixed points and
associated gaits and explore nonlinear phenomena involved in gait transitions.

4. Existence and stability of tetrapod and tripod gaits. We now prove that, under
suitable conditions on the coupling functions and coupling strengths, multiple fixed points
exist for (24), and we derive explicit expressions for eigenvalues of the linearized system at
these fixed points.

4.1. Existence with balance condition. We first provide conditions on the coupling
strengths ci such that equations (24) admit a stable fixed point at (θ1

1, θ
1
2) := (2/3−η, 1/3+η)

for any η ∈ [0, 1/6].
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Proposition 3. If the coupling strengths ci satisfy the relations

(25) c1 + c5 = c2 + c4 + c7 = c3 + c6,

then for any η ∈ [0, 1/6], equations (24) admit a fixed point at (θ1
1, θ

1
2) = (2/3 − η, 1/3 + η).

Note that (θ1
1, θ

1
2) = (2/3 − η, 1/3 + η) corresponds to forward tetrapod (η = 0), forward

transition (0 < η < 1/6), and tripod (η = 1/6) gaits. In addition, if the following inequalities
hold, then the fixed point is stable:

Tr := −(c5 + c7)H ′
(

1

3
+ η; ξ

)
− (c4 + c6)H ′

(
2

3
− η; ξ

)
< 0,

(26a)

Det := c5c6H
′
(

1

3
+ η; ξ

)
H ′
(

2

3
− η; ξ

)
+ c4c6

[
H ′
(

2

3
− η; ξ

)]2

+ c5c7

[
H ′
(

1

3
+ η; ξ

)]2

> 0.

(26b)

Equation (25) is called the balance equation; it expresses the fact that the sums of the coupling
strengths entering each leg are equal. The equalities were assumed, without biological support,
in [8], and were subsequently found to approximately hold for fast running cockroaches in [4,
Figure 9c], according to the best data fits, judged by AIC and BIC, as reported in that paper.

Proof. Since by (22), H(2/3− η; ξ) = H(1/3 + η; ξ), and

−(1/3 + η) = 2/3− η mod 1,

the right-hand sides of (24) at (θ1
1, θ

1
2) = (2/3− η, 1/3 + η) are

(c1 − c2 + c5 − c4 − c7)H

(
1

3
+ η; ξ

)
,(27a)

(c3 − c2 + c6 − c4 − c7)H

(
1

3
+ η; ξ

)
,(27b)

which are both zero by (25). Therefore, (θ1
1, θ

1
2) is a fixed point of (24).

To study the stability of (θ1
1, θ

1
2), we consider the linearization of equations (24) and

evaluate the Jacobian of their right-hand sides at (θ1
1, θ

1
2) = (2/3− η, 1/3 + η):

(28) J1 = −

 c5H
′ (1

3 + η; ξ
)

+ c4H
′ (2

3 − η; ξ
)

c7H
′ (1

3 + η; ξ
)

c4H
′ (2

3 − η; ξ
)

c6H
′ (2

3 − η; ξ
)

+ c7H
′ (1

3 + η; ξ
)
 ,

where H ′ stands for the derivative dH/dθ. A calculation shows that the trace and the deter-
minant of J1 at (θ1

1, θ
1
2) are as in inequalities (26). Since Tr < 0 and Det > 0, both eigenvalues

of J1 have negative real parts and (θ1
1, θ

1
2) is a stable fixed point of (24).

Corollary 4. Assume that (θ1
1, θ

1
2) = (2/3− η, 1/3 + η) is a fixed point of (24). Then,

• (θ2
1, θ

2
2) = (1/3 + η, 1/3 + η),

• (θ3
1, θ

3
2) = (1/3 + η, 2/3− η), which corresponds to a backward transition gait, and
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• (θ4
1, θ

4
2) = (2/3− η, 2/3− η),

are also fixed points of (24).

Proof. Since −(1/3 + η) = 2/3 − η mod 1 and by (22), H(2/3 − η; ξ) = H(1/3 + η, ; ξ),
the right-hand sides of (24) at (θ1

1, θ
1
2) = (2/3 − η, 1/3 + η) are equal to the right-hand sides

of (24) at (θi1, θ
i
2), i = 2, 3, 4, and both are therefore equal to zero.

Remark 1. Besides the four fixed points (θi1, θ
i
2), i = 1, 2, 3, 4, and depending on their

stability types, equations (24) may or may not admit more fixed points. By the Euler char-
acteristic [25, section 1.8], the sum of the indices of all the fixed points on a 2-torus must be
zero, thus allowing us to infer the existence of additional fixed points.

Next we determine the coupled stepping frequency ω̂ such that the transition gaits defined
in (19) become solutions of (21).

Proposition 5. If the coupling strengths ci satisfy (25) and inequalities (26), then for any
η ∈ [0, T/6], equations (21) admit the following stable T -periodic solutions:

AFR(η) :=

(
ω̂t+

2

3
− η, ω̂t, ω̂t+

1

3
+ η; ω̂t+

1

3
− 2η, ω̂t+

2

3
− η, ω̂t

)
,(29a)

AFL(η) :=

(
ω̂t+

2

3
− η, ω̂t, ω̂t+

1

3
+ η; ω̂t, ω̂t+

1

3
+ η, ω̂t+

2

3
+ 2η

)
,(29b)

where the coupled stepping frequency ω̂ = ω̂(ξ) satisfies

ω̂ = ω(ξ)+(c1 +c5)H

(
2

3
− η; ξ

)
= ω(ξ)+(c2 +c4 +c7)H

(
2

3
− η; ξ

)
= ω(ξ)+(c3 +c6)H

(
2

3
− η; ξ

)
.

Proof. By the definition of ω̂, and using (22), it can be seen that both AFR(η) and AFL(η)
are T -periodic solutions of (21). To check the stability of these solutions, we linearize the
right-hand side of (21) at AFR(η) and AFL(η) to obtain

J2 =

(
A 0
0 A

)
,

where 0 represents a 3× 3 zero matrix and

A =


−c5H

′ (1
3 + η; ξ

)
c5H

′ (1
3 + η; ξ

)
0

c4H
′ (2

3 − η; ξ
)
−c4H

′ (2
3 − η; ξ

)
− c7H

′ (1
3 + η; ξ

)
c7H

′ (1
3 + η; ξ

)
0 c6H

′ (2
3 − η; ξ

)
−c6H

′ (2
3 − η; ξ

)

 .

Note that since we assumed a constant contralateral symmetry between the right and left legs
in (21), these sets of legs are effectively decoupled, and hence J2 is a block diagonal matrix.

Some calculations show that the characteristic polynomial of A is

g(λ) = −λf(λ),
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where
f(λ) = λ2 − Trλ+ Det

is the characteristic polynomial of J1 (equation (28)) and Tr and Det are defined in inequal-
ities (26). The nonzero eigenvalues of A therefore have the same stability properties as the
nonzero eigenvalues of J2, and inequalities (26) guarantee the stability of both AFR(η) and
AFL(η), up to overall shifts in phase

φi → φi + φ̄R for i = 1, 2, 3 and φi → φi + φ̄L for i = 4, 5, 6,

which correspond to the two zero eigenvalues of J2.

Remark 2. The balance condition (25) is sufficient for the existence of tripod or tetrapod
gaits. In section 7, we will show the existence of such gaits for coupling strengths which
approximate balance and also which are far from balance.

4.2. Existence with balance condition and equal contralateral couplings. In Proposition
3, we provided sufficient conditions for the stability of tetrapod gaits when the coupling
strengths satisfy the balance condition (25).

In this section, in addition to the balance condition, we assume that c1 = c2 = c3. Then
under some extra conditions on ci’s and H, we show that for any η ∈ [0, 1/6], the fixed point
(2/3− η, 1/3 + η) is stable. The reason that we are interested in the assumption c1 = c2 = c3

is the following estimated coupling strengths from fruit fly data [26]. We will return to this
data set in section 7.

c1 = 2.9145, c2 = 2.5610, c3 = 2.6160, c4 = 2.9135, c5 = 5.1800, c6 = 5.4770, c7 = 2.6165.

In this set of data, the ci’s approximately satisfy the balance condition and also

c1 ≈ c2 ≈ c3, c5 ≈ c4 + c7 ≈ c6.

Proposition 6. Assume that the coupling strengths ci satisfy (25) and c1 = c2 = c3. Also
assume that ∀η ∈ [0, 1/6], H ′ = dH/dθ satisfies

(30) H ′
(

1

3
+ η; ξ

)
+H ′

(
2

3
− η; ξ

)
> 0.

Let α and αmax be as follows:

(31) α :=
c4

c4 + c7
, αmax :=

H ′
(

1
3 + η; ξ

)
H ′
(

1
3 + η; ξ

)
−H ′

(
2
3 − η; ξ

) .
If

(32) (αmax − α)

(
H ′
(

1

3
+ η; ξ

)
−H ′

(
2

3
− η; ξ

))
> 0,

then (θ1
1, θ

1
2) = (2/3− η, 1/3 + η) is a stable fixed point of (24), and if

(33) (αmax − α)

(
H ′
(

1

3
+ η; ξ

)
−H ′

(
2

3
− η; ξ

))
< 0,

then (θ1
1, θ

1
2) = (2/3− η, 1/3 + η) is a saddle point.
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Proof. Using the assumption c1 = c2 = c3 and (25), the following relations among the
coupling strengths hold:

(34) c1 = c2 = c3, c5 = c4 + c7 = c6.

Letting

(35) α :=
c4

c4 + c7
(0 < α < 1),

and making a change of time variable that eliminates c5, equations (24) become

θ̇1 = H(−θ1; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ),(36a)

θ̇2 = H(−θ2; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ).(36b)

Consider the linearization of (36) at (θ1, θ2):

J3(θ1, θ2) = −

 H ′(−θ1; ξ) + αH ′(θ1; ξ) (1− α)H ′(θ2; ξ)

αH ′(θ1; ξ) H ′(−θ2; ξ) + (1− α)H ′(θ2; ξ)

 .

Standard calculations show that the eigenvalues of J3 at (θ1
1, θ

1
2) = (2/3− η, 1/3 + η) are

λ1
1 = −H ′

(
2

3
− η; ξ

)
−H ′

(
1

3
+ η; ξ

)
, and λ1

2 = −(1−α)H ′
(

1

3
+ η; ξ

)
−αH ′

(
2

3
− η; ξ

)
.

By (30), H ′
(

2
3 − η; ξ

)
+ H ′

(
1
3 + η; ξ

)
> 0; hence λ1

1 < 0. A calculation shows that λ1
2 < 0

if H ′
(

1
3 + η; ξ

)
− H ′

(
2
3 − η; ξ

)
> 0 and α < αmax or H ′

(
1
3 + η; ξ

)
− H ′

(
2
3 − η; ξ

)
< 0 and

α > αmax. Therefore, if inequality (32) holds, then (θ1
1, θ

1
2) = (2/3 − η, 1/3 + η) is a stable

fixed point. Otherwise, (θ1
1, θ

1
2) = (2/3− η, 1/3 + η) is a saddle point.

In the following corollary, assuming that (30) holds and H ′ (2/3− η; ξ) < 0, we verify the
stability types of the other fixed points introduced in Corollary 4 (in section 5 we will see
that the coupling function computed for the bursting neuron model satisfies both of these
assumptions).

Proposition 7. Assume that for some η ∈ [0, T/6], (30) holds and H ′ (2/3− η; ξ) < 0.
Then
1.
(
θ2

1, θ
2
2

)
= (1/3 + η, 1/3 + η) is a saddle point;

2.
(
θ3

1, θ
3
2

)
= (1/3 + η, 2/3− η), which corresponds to a backward tetrapod gait, is a sink if

(37) α > αmin :=
H ′
(

2
3 − η; ξ

)
H ′
(

2
3 − η; ξ

)
−H ′

(
1
3 + η; ξ

)
and a saddle point if αmin > 0 and α < αmin;

3.
(
θ4

1, θ
4
2

)
= (2/3− η, 2/3− η) is a sink.

Proof. Note that for any i = 1, . . . , 4, the fixed point
(
θi1, θ

i
2

)
lies either on the line θ1 = θ2

or on the line θ1 = −θ2.
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1. The eigenvalues of J3 at
(
θ2

1, θ
2
2

)
= (1/3 + η, 1/3 + η) are

λ2
1 = −H ′(2/3− η; ξ)−H ′(1/3 + η; ξ) and λ2

2 = −H ′(2/3− η; ξ).

By (30), λ2
1 < 0 and since we assumed H ′(2/3− η; ξ) < 0, λ2

2 > 0. Therefore, independent
of the choice of α,

(
θ2

1, θ
2
2

)
is always a saddle point.

2. The eigenvalues of J3 at
(
θ3

1, θ
3
2

)
= (1/3 + η, 2/3− η) are

λ3
1 = −H ′(2/3−η; ξ)−H ′(1/3+η; ξ) and λ3

2 = −(1−α)H ′(2/3−η; ξ)−αH ′(1/3+η; ξ).

By (30), λ3
1 < 0. Since H ′ (2/3− η; ξ) < 0, for α > αmin, λ3

2 < 0. Therefore, (θ3
1, θ

3
2) is a

sink. Note that for α < αmin, λ3
2 becomes positive and so (θ3

1, θ
3
2) becomes a saddle point.

3. The eigenvalues of J3 at (θ4
1, θ

4
2) = (2/3− η, 2/3− η) are

λ4
1 = −H ′(2/3− η; ξ)−H ′(1/3 + η; ξ) and λ4

2 = −H ′(1/3 + η; ξ).

H ′(2/3− η; ξ) +H ′(1/3 + η; ξ) > 0 and H ′(2/3− η; ξ) < 0 imply that H ′(1/3 + η; ξ) > 0.
Therefore, both eigenvalues are negative and independent of the choice of α; (θ4

1, θ
4
2) is

always a sink.

On the other hand, if we assume that H ′(2/3 − η; ξ) > 0, then all stable fixed points
become saddle points and the saddle points become stable fixed points.

Proposition 8. In addition to
(
θi1, θ

i
2

)
, i = 1, . . . , 4, when c1 = c2 = c3, equations (24)

admit the following fixed points.
1. (θ5

1, θ
5
2) = (1/2, 1/2) is a fixed point and if ∃ ξ∗ ∈ [ξ1, ξ2] such that for ξ < ξ∗, H

′ (1/2; ξ) <
0, while for ξ > ξ∗, H

′ (1/2; ξ) > 0, then the fixed point (1/2, 1/2) changes its stability to a
sink from a source as ξ increases.

2.
(
θ6

1, θ
6
2

)
= (0, 0) is a fixed point and when H ′(0; ξ) < 0, it is a source.

Proof. 1. The eigenvalues of J3 at (1/2, 1/2) are

λ5
1 = −H ′(1/2; ξ) and λ5

1 = −2H ′(1/2; ξ),

so the stability depends on the sign of H ′(1/2; ξ), which by assumption is positive for
ξ < ξ∗. Hence, for ξ < ξ∗, both eigenvalues are positive and (θ5

1, θ
5
2) is a source and for

ξ > ξ∗, both eigenvalues becomes negative and hence (θ5
1, θ

5
2) = (1/2, 1/2) becomes a sink.

2. The eigenvalues of J3 at (0, 0) are

λ6
1 = −H ′(0; ξ) and λ6

1 = −2H ′(0; ξ),

so the stability depends on the sign of H ′(0; ξ), which we assumed is negative. Therefore,
(0, 0) is a source.

Note that as explained in Remark 1, by the Euler characteristic of zero for the 2-torus,
there should exist more fixed points (e.g., saddle points).

Proposition 9. If c1 = c3 and c5 = c6, then θ1 = θ2 is an invariant line. Moreover, if
c1 + c5 = c2 + c4 + c7 = c3 + c6, c1 = c2 = c3, and c4 = c7, then the system is reflection
symmetric with respect to θ1 = θ2; i.e., if (θ̇1, θ̇2) = (a, b) at (θ̄1, θ̄2), then (θ̇1, θ̇2) = (b, a) at
(θ̄2, θ̄1).
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Proof. First, setting c1 = c3 and c5 = c6 in (24), we conclude that θ̇1 = θ̇2. Hence θ1 = θ2

is invariant. Second, recognizing that α = c4/(c4 + c7) = 1/2, setting (θ1, θ2) = (θ̄1, θ̄2) and
(θ1, θ2) = (θ̄2, θ̄1) in (36) yields the result.

In the following sections we first apply the results of this section to the coupling functions
computed for the bursting neuron model (section 5). Then, we characterize a class of functions
H which satisfies Assumption 1 (section 6).

5. Application to the bursting neuron model. In section 3.1, for some δ and Iext values,
we numerically computed the coupling function HBN for the bursting neuron model (see
Figures 7 and 8). Here we show that the results of section 4 apply to the coupling function
HBN .

Lemma 10. The coupling function HBN , which is computed numerically from the bursting
neuron model, satisfies Assumption 1.

Proof. Figure 9 shows the graphs of η = η(ξ), the solutions of (22) for H = HBN , where
ξ = δ ∈ [δ1, δ2] = [0.0097, 0.04] (left) and ξ = Iext ∈ [I1, I2] = [35.65, 37.7] (right). (Note that
solving (22) is equivalent to solving GBN (θ; ξ) = 0 for θ, where GBN (θ; ξ) := HBN (θ; ξ) −
HBN (−θ; ξ).) Note that η is the unique solution of (22) which is nondecreasing and onto ((22)
is also satisfied by the constant solution η = T/6). Therefore, Assumption 1 is satisfied.

Figure 9. The solution η(ξ) of HBN (2/3− η; ξ) = HBN (1/3 + η; ξ), where ξ = δ and η : [0.0097, 0.04]→
[0, 1/6] (left), and where ξ = Iext and η : [35.65, 37.7]→ [0, 1/6] (right).

5.1. Balance condition. Since HBN satisfies Assumption 1, one can apply Proposition 3
to show that under the balance condition for the coupling strengths, and inequalities (26),
(2/3 − η, 1/3 + η) is a stable fixed point of (24) with H = HBN . In Figure 10, we show the
nullclines and phase planes of (24) with H = HBN and the coupling strengths as follows:

(38) c1 = 1, c2 = 2.5, c3 = 1.5, c4 = 5, c5 = 7.5, c6 = 7, c7 = 1.

Note that these coupling strengths satisfy the balance equation and for δ = 0.0097, they
satisfy inequalities (26) (Tr ≈ −2.78 < 0 and Det ≈ 0.61 > 0).

In all the simulations, the torus is represented by a 1×1 square. To obtain phase portraits
we solved (24) using the fourth order Runge–Kutta method with fixed time step 0.001 ms and
ran the simulation up to 100 ms with multiple initial conditions.
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Figure 10 (left to right) shows the nullclines and phase planes of (24) with H = HBN

computed in Figure 7 (left) for a small δ = 0.0097 and Figure 7 (right) for a large δ = 0.03,
respectively. Intersections of the nullclines indicate the location of fixed points. We observe
that for small δ, there exist 3 sinks corresponding to (θi1, θ

i
2), i = 1, 3, 4, and 1 saddle point

corresponding to (θ2
1, θ

2
2). In addition, there exist 2 sources (one located at (1/2, 1/2) and the

other one at (0, 0)), and 4 more saddle points. The fixed points (2/3, 1/3) (corresponding to
the forward tetrapod) and (1/3, 2/3) (corresponding to the backward tetrapod) are stable,
while (1/2, 1/2) (corresponding to the tripod) is unstable. For larger δ, for i = 1, 2, 3, 4,
(θi1, θ

i
2) merge to (1/2, 1/2), and (1/2, 1/2), which corresponds to the tripod gait, becomes a

sink. The unstable fixed point (0, 0) and the two remaining saddle points, near the boundary,
preserve their stability types.

Figure 10. Left to right: Nullclines and phase planes of (24) when ci’s satisfy (38), and δ = 0.0097 and
0.03, respectively. For computation of coupling functions, all bursting neuron parameters are as in the first
rows of Table 1.

Figure 11. λ1
1 = −H ′BN (2/3− η; ξ)−H ′BN (1/3 + η; ξ) versus ξ = δ (left) and ξ = Iext (right) are shown.

5.2. Balance condition and equal contralateral couplings. In this section we apply
Proposition 6 to HBN to show existence and stability of tetrapod and tripod gaits.

Consider (36) for H = HBN . Figure 11 shows that for ξ = δ and ξ = Iext

−λ1
1 = H ′BN (2/3− η; ξ) +H ′BN (1/3 + η; ξ) > 0.

Hence, inequality (30) holds. Figure 12 shows that H ′BN (2/3−η; ξ) < 0 and H ′BN (1/3+η; ξ) >
0. Therefore, H ′BN (1/3 + η; ξ)−H ′BN (2/3− η; ξ) > 0. Hence, by Proposition 6, If α < αmax,
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inequality (32) holds and (θ1
1, θ

1
2) = (2/3 − η, 1/3 + η) is a stable fixed point of (24), and if

α > αmax, inequality (33) holds and (θ1
1, θ

1
2) = (2/3− η, 1/3 + η) is a saddle point.

Figure 12. H ′BN (2/3 − η; ξ), H ′BN (1/3 + η; ξ), and H ′BN (1/2; ξ) versus ξ = δ (left) and ξ = Iext (right)
are shown. Note that the curves first meet at δ∗ (left) and I∗ (right) and subsequently overlap for δ > δ∗ and
Iext > I∗.

Moreover, by applying Propositions 7 and 8, we can show the existence and stability of
more fixed points as follows.

In (36) with H = HBN , the following hold.
1.
(
θ2

1, θ
2
2

)
= (1/3 + η, 1/3 + η) is a saddle point.

2. If α > αmin (as defined in (37)), then (θ3
1, θ

3
2) = (1/3 + η, 2/3 − η) is a stable fixed point;

otherwise, it is a saddle point.
3.
(
θ4

1, θ
4
2

)
= (2/3− η, 2/3− η) is a sink.

4. For ξ < ξ∗ (ξ∗ = δ∗ ≈ 0.0208 and ξ∗ = I∗ ≈ 36.3), (1/2, 1/2) is a source, and for ξ > ξ∗,
(1/2, 1/2) becomes a sink.
Note that by Figure 11, H ′BN (2/3 − η; ξ) + H ′BN (1/3 + η; ξ) > 0, and by Figure 12,

H ′BN (2/3 − η; ξ) < 0, and H ′BN (1/2; ξ) changes sign from negative to positive at ξ = ξ∗
(ξ∗ = δ∗ ≈ 0.0208 and ξ∗ = I∗ ≈ 36.3). Therefore, Propositions 7 and 8 give the desired
results.

5.3. Phase plane analyses. We now study (36) by analyzing phase planes. In the follow-
ing cases we preserve the balance condition and let c1 = c2 = c3 but allow α to vary. First
we assume that α = 1/2 (rostrocaudal symmetry), for which, by Proposition 9, the system is
reflection symmetric with respect to θ1 = θ2. For example, we let

c1 = c2 = c3 = 0.5, c4 = c7 = 1, c5 = c6 = 2.

Figure 13 (first row, left to right) shows the nullclines and phase planes of (36) for a
small δ = 0.0097 < δ∗ and a large δ = 0.03 > δ∗, respectively. Figure 13 (second row, left
to right) shows the nullclines and phase planes of (36) for a small Iext = 35.65 < I∗ and
a large Iext = 37.1 > I∗, respectively. As expected from Propositions 6 and 7, we observe
that when δ or Iext is small, there exist 3 sinks corresponding to (θi1, θ

i
2), i = 1, 3, 4, and

2 sources corresponding to (θi1, θ
i
2), i = 5, 6. In addition, there exist 5 saddle points, of

which one corresponds to (θ2
1, θ

2
2). When δ or Iext is large, (θi1, θ

i
2) for i = 1, 2, 3, 4 merge
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650 ZAHRA AMINZARE, VAIBHAV SRIVASTAVA, AND PHILIP HOLMES

Figure 13. Nullclines and phase planes of (36) when α = 1/2. First row: δ = 0.0097 (left) and δ = 0.03
(right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right). Note reflection symmetry.

Figure 14. Nullclines and phase planes of (36) when α = 1/3. First row: δ = 0.0097 (left) and δ = 0.03
(right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right). Reflection symmetry is slightly broken, but the
invariant line θ1 = θ2 persists.

to (θ5
1, θ

5
2) = (1/2, 1/2), and we observe that (1/2, 1/2) which corresponds to the tripod gait

becomes a sink. The unstable fixed point (0, 0) and two saddle points continue to exist and
preserve their stability types.

Next, we let α 6= 1/2 but keep it close to 1/2, i.e., we want αmin < α < αmax. Specifically,
we set

c1 = c2 = c3 = c4 = 1, c7 = 2, c5 = c6 = 3,

so that α = 1/3. Figure 14 (first row, left to right) shows the nullclines and the phase planes
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of (36) for a small δ = 0.0097 and a large δ = 0.03, respectively. Figure 14 (second row, left
to right) shows the nullclines and the phase planes of (36) for a small Iext = 35.65 and a large
Iext = 37.1, respectively. As we expect, the qualitative behaviors of the fixed points do not
change, but reflection symmetry about the diagonal θ1 = θ2 is broken, as most easily seen in
the nullclines.

Finally, we let α ≈ 1, i.e., α > αmax. For δ < δ∗ (resp., Iext < I∗), we expect to have a
stable backward tetrapod gait at (1/3 + η, 2/3− η) and an unstable forward tetrapod gait at
(2/3− η, 1/3 + η). For δ > δ∗ (resp., Iext > I∗), the tripod gait at (1/2, 1/2) becomes stable.
In the simulations shown below we let

c1 = c2 = c3 = 0.5, c4 = 2, c7 = 0.1, c5 = c6 = 2.1,

so that α ≈ 0.952.

Figure 15. Nullclines and phase planes of (36) when α ≈ 0.95 > αmax. First row: δ = 0.0097 (left) and
δ = 0.03 (right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right). Reflection symmetry is clearly broken.

Figure 15 (first row, left to right) shows the nullclines and phase planes of (36) for a small
δ = 0.0097 and a large δ = 0.03, respectively. Figure 15 (second row, left to right) shows
the nullclines and the phase planes of (36) for a small Iext = 35.65 and a large Iext = 37.1,
respectively. Here reflection symmetry is broken more obviously. Similarly, when α is near
zero, i.e., α < αmin, we expect to have a stable forward tetrapod gait and an unstable backward
tetrapod gait. In Figure 16, we let c1 = c2 = c3 = 0.5, c4 = 0.1, c7 = 3, c5 = c6 = 3.1, so
that α ≈ 0.032. As we expect, the forward tetrapod gait remains stable while the backward
tetrapod gait becomes a saddle through a transcritical bifurcation. However, a stable fixed
point appears (through the same transcritical bifurcation) very close to the backward tetrapod
gait.

In this section, using the coupling functions HBN that we computed numerically and with
appropriate conditions on coupling strengths ci, we saw that the phase difference equations
admit 10 fixed points when the speed parameter is small (Figures 13–14 (left)), and 4 fixed
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Figure 16. Nullclines and phase planes of (36) when α ≈ 0.032 < αmin. First row: δ = 0.0097 (left) and
δ = 0.03 (right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right). Reflection symmetry is clearly broken.

points when the speed parameter is high (Figures 13–14 (right)). We saw how 4 fixed points
(located on the corners of a square) together with 2 saddle points (near the corners of the
square) merged to one fixed point (located on the center of the square). We would like to
show that in fact 7 fixed points merge and one fixed point bifurcates. To this end, in section
6.1, we approximate the coupling function HBN by a low order Fourier series.

6. A class of coupling functions producing gait transitions. In this section, we first
characterize a class of functions satisfying Assumption 1 and then provide an example based
on the bursting neuron model.

Proposition 11. Let H(θ; ξ) be C2 and 1-periodic on θ ∈ [0, 1] and C1 on ξ ∈ [ξ1, ξ2], and
let G(θ; ξ) = H(θ; ξ)−H(−θ; ξ). Assume that
(1) ∃ ξ̄ ∈ [ξ1, ξ2) such that G(1/3; ξ̄) = 0;
(2) ∀ ξ > ξ̄ and 1/3 ≤ θ < 1/2, dGdξ (θ; ξ) < 0;

(3) ∃ ξ∗ ∈ (ξ̄, ξ1] such that ∀ θ ∈ (1/3, 1/2), and ξ̄ < ξ < ξ∗,
d2G
dθ2

(θ; ξ) = G′′(θ; ξ) < 0.

Then, ∀ ξ ∈ (ξ̄, ξ∗), G(θ; ξ) = 0 has a unique solution in [1/3, 1/2] denoted by θ̂(ξ) such that
θ̂(ξ̄) = 1/3, θ̂(ξ∗) = 1/2, and θ̂(ξ) is a continuous and increasing function on [ξ̄, ξ∗].

Let η(ξ) = θ̂(ξ)− 1/3. Then G(θ̂; ξ) = 0 implies

G(η(ξ)+1/3; ξ) = H(η(ξ)+1/3; ξ)−H(−η(ξ)−1/3; ξ) = H(η(ξ)+1/3; ξ)−H(−η(ξ)+2/3; ξ) = 0,

which is equivalent to (22) in Assumption 1.

Proof. Since H is 1-periodic, G(1/2; ξ) = 0 ∀ ξ, and because G′′(θ; ξ) < 0 for θ ∈ (1/3, 1/2)
and ∀ ξ < ξ∗,

(39) G(1−/2; ξ) > 0 where 1−/2 < T/2 is sufficiently close to 1/2.
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Also, since G(1/3; ξ̄) = 0 and dG
dξ (1/3; ξ) < 0,

(40) G(1/3; ξ) < 0 ∀ ξ > ξ̄.

Inequalities (39) and (40) and Bolzano’s intermediate value theorem imply that for any ξ ∈
(ξ̄, ξ∗), G(θ; ξ) has a zero θ̂(ξ) ∈ (1/3, 1/2). G′′(θ; ξ) < 0 for θ ∈ (1/3, 1/2) guarantees
uniqueness of θ̂(ξ).

Next we show that θ̂(ξ) is increasing; i.e., for any x2 > x1 ⇒ θ̂(x2) > θ̂(x1). Fix x1 > ξ̄.
By definition of θ̂(ξ), G(θ̂(x1);x1) = 0, and because dG

dξ (θ̂(x1); ξ) < 0, ∀ ξ > x1,

(41) G(θ̂(x1);x2) < 0.

Inequalities (39) and (41) and Bolzano’s theorem imply thatG(θ;x2) has a zero in (θ̂(x1), T/2).
Since the zero is unique, it lies at θ̂(x2) and so θ̂(x2) > θ̂(x1). Moreover, θ̂(x) is continuous:
∀ ε > 0,∃ δ > 0 such that

(42) |x1 − x2| < δ ⇒ |θ̂(x1)− θ̂(x2)| < ε.

We now prove inequality (42). Fix x1 ∈ (ξ̄, ξ∗) and choose ξ̄ < x1 small enough such that

0 < b := G
(
θ̂(ξ̄) +

ε

2
;x1

)
< a := G

(
θ̂(ξ̄) +

ε

2
; ξ̄
)
.

Now G(θ; ξ) is continuous, decreasing with ξ, and ξ̄ < x1; therefore G(θ̂(ξ̄);x1) < 0. Since
G(θ̂(ξ) + ε/2;x1) > 0 and G(θ̂(ξ̄);x1) < 0 we find that θ̂(x1) ∈ (θ̂(ξ̄), θ̂(ξ̄) + ε/2), and hence
that

(43) |θ̂(ξ̄)− θ̂(x1)| < ε

2
.

Since G(θ, ξ) is continuous on ξ, for ε1 = (a − b)/4 > 0, ∃ δ1 < (x1 − ξ̄)/2 such that
|x2 − x1| < δ1 implies that∣∣∣G(θ̂(ξ̄) +

ε

2
;x2

)
−G

(
θ̂(ξ̄) +

ε

2
;x1

)∣∣∣ < ε1,

and this in turn implies that G(θ̂(ξ̄) + ε/2;x2) > 0. Since δ1 < (x1 − ξ̄)/2, x2 > ξ̄ and so
G(θ̂(ξ̄);x2) < 0. Therefore if θ̂(x2) ∈ (θ̂(ξ̄), θ̂(ξ̄) + ε/2) then

(44) |θ̂(x2)− θ̂(ξ̄)| < ε

2
.

Finally, (43) and (44) imply that for δ = δ1, if |x1 − x2| < δ, then |θ̂(x1)− θ̂(x2)| < ε.

As an example, we next show that Happ(θ; ξ), an explicit function which approximates
HBN (θ; ξ), satisfies assumptions (1), (2), and (3) in Proposition 11.
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Figure 17. Fourier coefficients of Happ.

6.1. Example of an explicit coupling function. In this section, we approximate Happ by
its Fourier series and derive an explicit function Happ as follows. To derive Happ, we first
computed the coefficients of the Fourier series of HBN , and then, using polyfit in MATLAB,
fitted an appropriate quadratic function for each coefficient, obtaining

a0(δ) = −80.8384δ2 + 2.6862δ − 0.0986,(45a)

a1(δ) = −137.9839δ2 + 7.5308δ − 0.1433,(45b)

b1(δ) = 77.9417δ2 − 3.9694δ − 0.0720,(45c)

a2(δ) = −184.2374δ2 + 8.9996δ − 0.0420,(45d)

b2(δ) = 68.0350δ2 + 0.6692δ − 0.1077,(45e)

as shown in Figure 17. By definition, Happ(θ; δ) on [0 1]× [0.008 0.024] is

Happ(θ; δ) :=
2∑

k=0

ak(δ) cos(2πkθ) +
2∑

k=1

bk(δ) sin(2πkθ).

In Figure 18, we compare the approximate coupling function Happ with HBN for the values
of δ at the endpoints of the interval of interest.

Figure 18. The coupling function HBN and its approximation Happ are shown for δ = 0.01 (left) and
δ = 0.024 (right).

We next verify that

(46) Gapp(θ; δ) := Happ(θ; δ)−Happ(−θ; δ) = 2b1(δ) sin(2πθ) + 2b2(δ) sin(4πθ)
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Figure 19. The graphs of Gapp on [1/3, 1/2] and for different values of δ are shown.

satisfies conditions (1), (2), and (3) of Proposition 11.
Conditions of Proposition 11. Figure 19 shows the graphs of Gapp for different values of

δ. Since we are only interested in the interval [1/3, 1/2], we only show the Gapp’s in this
interval. As Figure 19 shows, for δ̄ = 0.008, Gapp equals to zero at 1/3: Gapp(1/3; 0.008) = 0.
In the interval [1/3, 1/2], as δ increases, at each point θ, Gapp decreases: dGapp/dδ < 0. For
δ < δ∗ = 0.0218, the graph of Gapp is concave down: G′′app < 0. One can compute the zero of
Gapp(1/3; δ), dGapp/dδ, and G′′app explicitly and verify the above conditions.

Computing η. We show that

(47) η(δ) =
1

2π
arccos

(
−b1(δ)

2b2(δ)

)
− 1

3

is a unique nonconstant and nondecreasing solution of Happ (2/3− η; δ) = Happ (1/3 + η, δ).
Note that η is defined only where |−b1(δ)/2b2(δ)| ≤ 1. Figure 20 (left) shows that ∃δ∗ ≈ 0.0218
such that for δ ∈ [0.008, δ∗], −1 ≤ −b1(δ)/2b2(δ) < 0. Therefore, we let [0.008, δ∗] be the
domain of η, where δ∗ satisfies

(48)
−b1(δ∗)

2b2(δ∗)
= −1.

Figure 20 (right) shows the graph of η. Note that the range of η is approximately [0, 1/6], as
desired. A simple calculation shows that because cos(2π − x) = cosx,

cos (2πk (2/3− η)) = cos (2πk − (2πk (2/3− η))) = cos (2πk (1/3 + η)) ,

and therefore the cosine terms in the Fourier series cancel, resulting in

(49)

Happ

(
2

3
− η; δ

)
= Happ

(
1

3
+ η; δ

)
⇐⇒

2∑
k=1

bk(δ) sin (2πk (2/3− η)) =
2∑

k=1

bk(δ) sin (2πk (1/3 + η)) .
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Figure 20. Left: The graph of −b1(δ)/2b2(δ) which determines the domain of η defined in (47). Right:
The graph of η.

Using the fact that sin(2π − x) = − sinx, we have

sin (2πk (2/3− η)) = − sin (2πk − (2πk (2/3− η))) = − sin (2πk (1/3 + η)) ,

and so the right-hand equality of (49) can be written as follows:

2∑
k=1

bk(δ) sin (2πk (2/3− η)) =

2∑
k=1

bk(δ) sin (2πk (1/3 + η))(50a)

⇐⇒ −
2∑

k=1

bk(δ) sin (2πk (1/3 + η)) =
2∑

k=1

bk(δ) sin (2πk (1/3 + η))(50b)

⇐⇒ b1(δ) sin (2π (1/3 + η)) + b2(δ) sin (4π (1/3 + η)) = 0.(50c)

Now using the double-angle identity, sin(2x) = 2 sinx cosx, we get

Happ

(
2

3
− η; δ

)
= Happ

(
1

3
+ η; δ

)
⇐⇒ sin (2π(1/3 + η)) [b1(δ) + 2b2(δ) cos (2π(1/3 + η))] = 0.

Since we are looking for a nonconstant and nondecreasing solution, we solve

b1(δ) + 2b2(δ) cos (2π(1/3 + η)) = 0

for η, which gives η as in (47).
Therefore, by Proposition 11, equations (24), with H = Happ and the balance equation

(25), admit a fixed point at (1− θ̂(ξ), θ̂(ξ)) = (2/3−η, 1/3+η), which corresponds to a forward
tetrapod gait at ξ = ξ̄, a tripod gait ξ = ξ∗, and a transition gait for ξ ∈ (ξ̄, ξ∗).

In what follows we assume (36) with H = Happ. We compute H ′app and show that it
satisfies conditions of Propositions 6, 7, and 8.

(51) H ′app = −2π
2∑

k=1

k ak(δ) sin(2πkθ) + 2π
2∑

k=1

k bk(δ) cos(2πkθ).
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Conditions of Proposition 6. First, we verify the stability of (2/3− η, 1/3 + η).

H ′app (1/3 + η, δ)±H ′app (2/3− η, δ) > 0 ∀δ ∈ [0.01, δ∗].

Substituting (47) into the derivative of Happ, (51), and using trigonometrical identities yields

H ′app

(
1

3
+ η; δ

)
+H ′app

(
2

3
− η; δ

)
= −2π

4b22(δ)− b21(δ)

b2(δ)
> 0

and

H ′app

(
1

3
− η; δ

)
+H ′app

(
2

3
− η; δ

)
= π

(
a1(δ)− 2

a2(δ)b1(δ)

b2(δ)

) √
4b22(δ)− b21(δ)

b2(δ)
> 0,

which are positive because 4b22(δ)−b21(δ) > 0 on [0.008, δ∗], a1(δ), b1(δ), b2(δ) < 0, and a2(δ) >
0 (see Figures 20 (left) and 17). Therefore, by Proposition 7, for α < αmax (resp., α > αmax),
(2/3− η, 1/3 + η) is a sink (resp., saddle point).

Conditions of Proposition 7. Next, we verify the stability of (1/3 + η, 1/3 + η), (1/3 +
η, 2/3− η), and (2/3− η, 2/3− η).

H ′app (2/3− η, δ) changes sign, on the domain of η, i.e., [0.01, δ∗]. Substituting (47) into
the derivative of Happ, (51), and using trigonometrical identities yields

H ′app

(
2

3
− η; δ

)
= − π

b2(δ)

√
4b22(δ)− b21(δ)

(
a1(δ)− 2

a2(δ)b1(δ)

b2(δ)
+
√

4b22(δ)− b21(δ)

)
.

Figure 21 (left) shows that H ′app (2/3− η; δ) changes sign from positive to negative on δ ∈
[0.01, δ∗], at some δ near 0.01. We will see that through a transcritical bifurcation, (1/3 +
η, 1/3 + η) becomes a saddle point from a sink. The reason is that by Proposition 7, as
H ′app(2/3 − η; δ) changes sign, one of the eigenvalues of (1/3 + η, 1/3 + η) becomes positive
while the other one remains negative. For α > αmin, the fixed points (1/3 + η, 2/3 − η) and
(2/3− η, 2/3− η) are always sinks.

Figure 21. Left: H ′app
(
2
3
− η; δ

)
< 0. Right: H ′app

(
1
2
; δ
)
.
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Conditions of Proposition 8. Finally, we verify the stability types of (1/2, 1/2) and (0, 0).
• For δ < δ∗, H

′
app (1/2; δ) < 0, while for δ > δ∗, H

′
app (1/2; δ) > 0. Setting θ = 1/2 in

(51), we get

H ′app(1/2; δ) = 2π(2b2(δ)− b1(δ)).

By the definition of δ∗, for δ < δ∗, −b1/2b2 < −1. Figure 21 (right) shows that
H ′app(1/2, δ) changes sign from negative to positive at δ = δ∗. This guarantees that
the fixed point (1/2, 1/2) becomes stable as δ passes δ∗.
• H ′app(0; δ) < 0. Setting θ = 0 in (51), we obtain H ′app(0; δ) = 2π(b1(δ) + 2b2(δ)),

which is negative because for δ ∈ [0.0080.024] both b1(δ) and b2(δ) are negative (see
Figure 17). This guarantees that (0, 0) is always a source.

6.2. Bifurcation diagrams: Balance conditions and equal contralateral couplings. In
this section, we consider (36) for H = Happ and study the bifurcations as δ increases. We
draw the bifurcation diagrams (Figure 23) using Matcont, a MATLAB numerical continuation
packages for the interactive bifurcation analysis of dynamical systems [27]. We first consider
the system with α = 1/3. When δ is small, δ = 0.01, as Figure 22 (first row, left) shows, there
exist 12 fixed points: 6 saddle points, 2 sources, and 4 sinks. In this case, (1/3 + η, 1/3 + η)
is a sink (shown by a green dot in Figure 22). As δ increases and reaches δ(0) (Figure 23
(left)), through a transcritical bifurcation, (1/3 + η, 1/3 + η) becomes a saddle. Further, as δ
reaches δ(1), through a saddle node bifurcation, a sink (green dot) and a saddle (orange star)
annihilate each other and 10 fixed points remain: 5 saddle points, 2 sources, and 3 sinks (see
Figures 22 (first row, right) and 23 (left)). Note that the two extra fixed points were not
observed in the case of the numerically computed H and the transcritical and saddle node
bifurcations did not occur.

As δ increases further to δ(2), through a degenerate bifurcation, 4 fixed points disappear
and only 6 fixed points remain (see Figures 22 (second row, left) and 23 (left)).

When δ reaches δ(3), 2 fixed points vanish in a saddle node bifurcation and 4 fixed points
remain: 2 saddle points, a source, and a sink (see Figures 22 (second row, right) and 23 (left)).
Note that 2 saddle points and 1 source near the edges of the square remain unchanged while
δ varies. Figure 23 (left) shows the bifurcation diagram when α = 1/3.

Remark 3. Figure 23 (right) shows the bifurcation diagram when α = 1/2. In this case,
due to reflection symmetry about θ(1) = θ(2), there is no saddle node bifurcation at δ = δ(3) (as
in the case of α = 1/3), and 7 fixed points merge to (1/2, 1/2) in a very degenerate bifurcation.
Section 6.1 shows that H ′app(1/2; δ∗) = 0 at this point, implying that the Jacobian matrix of
the linearized system (36) vanishes completely. This degeneracy involves a combination of
pitchfork bifurcations, but due to the high degree of degeneracy we have not analyzed this
case.

7. Gaits deduced from fruit fly data fitting. In this section, we use two sets of coupling
strengths which were estimated for slow, medium, and fast wild-type fruit flies in our reduced
model on the torus and show the existence of stable tetrapod gaits at low frequency and stable
tripod gaits at higher frequency. To vary frequency, we change Iext in the first set of estimates
in section 7.1, and we change δ in the second set of estimates in section 7.2. Unlike the gait
transitions of section 4, the fitted data predict different coupling strengths across the speed
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Figure 22. Nullclines of (36) with H = Happ, α = 1/3, and 4 values of δ are shown. Note enlargements
of nullcline intersections in left column. First row: δ = 0.01 (left), δ = 0.014 (right); as δ increases, a
transcritical bifurcation at δ = δ(0) > 0.01 and a saddle node bifurcation at δ = δ(1) < 0.014 occur. Second
row: δ = 0.023 (left), δ = 0.025 (right); as δ increases, a degenerate bifurcation at δ = δ(2) > 0.023 and a
saddle node bifurcation at δ = δ(3) > 0.025 occur. The corresponding bifurcation diagram is shown in Figure
23 (left). Note that the green dot indicates a sink and the orange star indicates a saddle point. See text for
further explanation.

Figure 23. Partial bifurcation diagrams of (36) with H = Happ for α = 1/3 (left) and α = 1/2 (right).
In both cases the coupling strengths are balanced, but the α = 1/3 case is not rostrocaudally symmetric. The
source (0, 0) and two saddle points near θ1 = 0 and θ2 = 0 are omitted.

range. As in previous sections, we display both results from the bursting neuron model and
the nullclines and phase planes from the reduction to the (θ1, θ2) plane.
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Table 3
Values of estimated frequency and coupling strengths for slow, medium, and fast wild-type fruit flies.

ω̂ c1 c2 c3 c4 c5 c6 c7

slow 9.92 0.3614 0.1478 0.1780 0.1837 0.2509 0.3409 0.1495

medium 12.48 0.2225 0.6255 0.4715 0.1436 0.3895 0.7921 0.2964

fast 15.52 0.0580 0.8608 0.6726 0.0470 0.4294 1.1498 0.8500

7.1. Dataset 1. We first exhibit a gait transition from tetrapod to tripod as Iext increases.
Table 3 shows the coupling strengths ci which were estimated for slow (represented by coupled
frequency ω̂ = 9.92), medium (ω̂ = 12.48), and fast (ω̂ = 15.52) wild-type fruit flies. These
fits were obtained after linearizing (18) and adding i.i.d. zero mean Gaussian noise to each
equation. The touchdown times of every leg are treated as measurements of the phase of its as-
sociated oscillator in (18), additionally corrupted by a zero mean Gaussian measurement noise.
To incorporate the circular nature of phase measurements, the initial condition distribution
for (18) is modeled by a mixture Gaussian distribution. For each sequence of leg touchdowns,
a Gaussian sum filter [28] is used to compute the distribution and the log-likelihood of leg
touchdown times. The aggregate log-likelihood for pooled sequences of leg touchdowns for
different flies is maximized to compute the maximum likelihood estimates (MLEs) of coupling
strengths, phase differences, and variance of the i.i.d. measurement noises.

We choose 3 different values of Iext: Iext = 35.95 for slow (represented by uncoupled
frequency ω = 8.76), Iext = 36.85 for medium (ω = 12.64), and Iext = 37.65 for fast (ω =
14.85) speeds. Note that in general ω̂ < ω, because we assume that all the couplings are
inhibitory, i.e., ciH < 0, although the coupled frequencies corresponding to the slow and fast
speed are not less than the uncoupled frequency in our simulations below. Also note that the
medium and fast speed coupling parameters (Table 3, second and third rows) are far from
balanced.

Figure 24 shows solutions of the 24 ODE bursting neuron model for the following initial
conditions:

(52) v1 = −40, v2 = 10, v3 = −10, v4 = 30, v5 = 15, v6 = −30.

For i = 1, . . . , 6, the mi’s, wi’s, and si’s take their steady state values as in (10). In Figure 24
(left), Iext = 35.95 and the coupling strengths ci are as in Table 3, first row. In Figure 24
(middle), Iext = 36.85 and the coupling strengths ci are as in Table 3, second row. In Figure 24
(right), Iext = 37.65 and the coupling strengths ci are as in Table 3, third row. As we expect,
these respectively depict tetrapod, transition, and tripod gaits. We computed the solutions
up to time t = 5000 ms but only show the time windows [4800, 5000], after transients have
died out.

Figure 25 shows the nullclines (first row) and the corresponding phase planes (second
row) of (24) for the three different values of Iext. As Figure 25 (left) depicts, when the speed
parameter is small, there exist 6 fixed points: 2 sinks which correspond to the forward and
backward tetrapod gaits, a source, and 3 saddle points. As Figure 25 (middle) depicts, when
the speed parameter increases, there exist 4 fixed points: a sink which corresponds to the
transition gait, a source, and 2 saddle points. As Figure 25 (right) depicts, when the speed
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Figure 24. Left to right: A solution of 24 ODEs for Iext = 35.95 and ci’s as in the first row of Table 3;
Iext = 36.85 and ci’s as in the second row of Table 3; and for Iext = 37.65 and ci’s as in the third row of Table
3.

Figure 25. (First row: left to right) Nullclines of (24) for Iext = 35.95 and ci’s as in the first row of Table
3; Iext = 36.85 and ci’s as in the second row of Table 3; and for Iext = 37.65 and ci’s as in the third row of
Table 3. (Second row: left to right) Corresponding phase planes. Note that the green dot indicates a sink and
the orange star indicates a saddle point. See text for further explanation.

parameter is large, there exist only 2 fixed points: a sink corresponding to the tripod gait and
a saddle point.

7.2. Dataset 2. In this section, we show a gait transition from tetrapod to tripod, as δ
increases. Table 4 shows the coupling strengths ci which were estimated for medium (rep-
resented by coupled frequency ω̂ = 12.23) and fast (ω̂ = 15.65) wild-type fruit flies. These
fits are obtained using linearized ODEs similar to section 7.1. However, to obtain these fits,
touchdown sequences for different flies are concatenated to obtain a single large sequence and
a Kalman filter is used to compute the distribution and the log-likelihood of leg touchdown
times. The MLEs for coupling strengths are obtained by maximizing the aggregate likelihood
for the concatenated touchdown sequence.

We choose 2 different values of δ, δ = 0.014 for medium (represented by uncoupled fre-
quency ω = 3.57) and δ = 0.03 for fast (ω = 6.91) speeds [26]. As noted earlier in section 2.1.1,
as δ varies in the bursting neuron model, the range of frequency does not match the range of
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Table 4
Values of estimated frequency and coupling strengths for medium, and fast free-walking wild-type fruit flies.

ω̂ c1 c2 c3 c4 c5 c6 c7

medium 12.23 0.2635 1.2860 2.9480 1.3185 1.3885 2.5025 1.2265

fast 15.65 2.9145 2.5610 2.6160 2.9135 5.1800 5.4770 2.6165

frequency estimated from data. In spite of this, we show that the estimated coupling strengths
in the low speed range (small δ) give a tetrapod gait and in the high speed range (large δ)
give a tripod gait.

Figure 26 shows solutions of the 24 ODE bursting neuron model for the following initial
conditions:

(53) v1 = −10, v2 = −40, v3 = −30, v4 = −40, v5 = 5, v6 = 20.

For i = 1, . . . , 6, mi’s, wi’s, and si’s take their steady state values as in (10). In Figure 26
(left), δ = 0.014 and the coupling strengths ci are as in Table 4, first row. In Figure 26
(right), δ = 0.03 and the coupling strengths ci are as in Table 4, second row. As we expect,
Figure 26 (left to right) depicts transition (still very close to a tetrapod gait) and tripod gaits,
respectively. We computed the solutions up to time t = 5000 ms but only show the time
window [4000, 5000], after transients have died out.

Figure 26. Left to right: A solution of 24 ODEs for δ = 0.014 and ci’s as in the first row of Table 4 and
for δ = 0.03 and ci’s as in the second row of Table 4. Note the approximate tetrapod and almost perfect tripod
gaits.

Figures 27 (left to right) show the nullclines and corresponding phase planes of (24) for the
two different values of δ. As Figure 27 (left) depicts, when the speed parameter is relatively
small, there exist 4 fixed points: a sink which corresponds to a transition gait, a source, and 2
saddle points. Figure 27 (right) shows that these fixed points persist as the speed parameter
increases, but the sink now corresponds to a tripod gait. No bifurcation of fixed points occurs,
although the topology of the nullclines changes.

Note that the estimated coupling strengths in only the second row of Table 4 approximately
satisfy the balance equation (25) and also c1 ≈ c2 ≈ c3. Hence, as our analysis predicts, the
system has 4 fixed points: a sink corresponding to a tripod gait, a source, and 2 saddle points.
Although the other estimated coupling strengths do not satisfy the balance equation (25), we
still observe the existence of one sink which corresponds to a tetrapod gait (slow speed), a
transition gait (medium speed), or a tripod gait (high speed). As discussed earlier, the balance
equation is a sufficient condition for the existence of tetrapod and tripod gaits, but it is not
necessary. The estimated coupling strengths in Tables 3 and 4 (first row) and Figures 25 and
27 provide counterexamples.
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Figure 27. Left to right: Nullclines and phase planes of (24) for δ = 0.014 and ci’s as in the first row of
Table 4 (left pair); δ = 0.03 and ci’s as in the second row of Table 4 (right pair). Note the close approximation
to reflection symmetry at right due to almost perfect balance, c1 ≈ c2 ≈ c3, and α = 0.5269 ≈ 1/2.

Remark 4. The coupling strengths ci in Tables 3 and 4 are at most O(1), the largest being
≈ 5.48 in Table 4. From Figures 7 and 8 (second rows), the maxima of |H| are 0.19 (as Iext
varies) and 0.4 (as δ varies). Thus |ciH| takes maximum values of 0.19 × 1.15 ≈ 0.219 in
Table 3 and 0.4 × 5.48 ≈ 2.19 in Table 4. For both sets of data, we observe transition from
a stable (forward) tetrapod gait to a stable tripod gait as the speed parameter ξ increases.
However, the coupled frequency ω̂ should be less than the uncoupled frequency ω, which does
not hold in some cases.

8. Discussion. In this paper we developed an ion-channel bursting neuron model for an
insect central pattern generator based on that of [8]. We used this to investigate tetrapod to
tripod gait transitions, at first numerically for a system of 24 ODEs describing cell voltages,
ionic gates, and synapses, and then for a reduced system of six coupled phase oscillators. This
still presents a challenging problem, but by fixing contralateral phase differences, we further
reduced to three ipsilaterally coupled oscillators and then to a set of ODEs defined on the
2-torus that describes phase differences between front and middle and hind and middle legs.
This allowed us to study different sets of inter-leg coupling strengths as stepping frequency
increases, and to find constraints on them that yield systems whose phase spaces are amenable
to analysis.

Recent studies of different 3-cell ion-channel bursting CPG networks [29, 30, 31] share some
common features with the current paper. Without explicitly addressing insect locomotion,
or using phase reduction theory, the authors numerically extract Poincaré maps defined on
2-dimensional tori which have multiple stable fixed points corresponding to orbits with specific
phase differences. In [31] they discuss transient control inputs that can move solutions from
one stable state to another. A more abstract study of coupled cell systems with an emphasis
on heteroclinic cycles that lie in “synchronous subspaces” appears in [32].

In addition to Propositions 3, 5, 6, and 7 and Corollary 4, which characterize particular
tetrapod and tripod solutions of the phase and phase-difference equations, our main results in
sections 4 and 7 illustrate the existence of these solutions and their stability types. Figures 10
and 13–15 display nullclines and phase portraits for systems with balanced coupling strengths,
showing how a set of fixed points arrayed around a square astride the main diagonal θ1 = θ2

on the 2-torus collapses to a single fixed point, corresponding to a stable tripod gait, as speed
increases. Figures 22 and 23 illustrate nullclines and bifurcation diagrams for a Fourier series

D
ow

nl
oa

de
d 

02
/2

8/
18

 to
 1

40
.1

80
.2

48
.4

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

664 ZAHRA AMINZARE, VAIBHAV SRIVASTAVA, AND PHILIP HOLMES

approximation of the coupling function. Finally, Figures 24–27 show gaits, nullclines, and
phase portraits for several cases in which coupling strengths were fitted to data from free
running animals.

While details vary depending upon the coupling strengths, the results of section 4 reveal a
robust phenomenon in which a group of fixed points that include stable forward and backward
tetrapod gaits converge upon and stabilize a tripod gait. This occurs even for coupling
strengths that are far from balanced. For the coupling strengths derived from data in section 7
(Figures 24–27), as stepping frequency increases and coupling strengths change there is still
a shift from an approximate forward tetrapod to an approximate tripod gait, in which the
tetrapod gaits disappear in saddle node bifurcations. In the final example (Figures 26 and 27
(right panels)) the tripod gait is almost ideal.

In Definition 1 we introduced 4 tetrapod gaits, two of which feature a wave traveling from
front to hind legs. Such backward waves are not normally seen in insects and we excluded
them from the gaits illustrated thus far. They do, however, appear as fixed points in the
region (θ1, θ2) = (1/3 + η, 2/3 − η) on the torus, which as shown in section 5.2, are stable
for some values of coupling strengths. We note that this backward wave in leg touchdowns
does not imply backward walking, the study of which demands a more detailed model with
motoneurons and muscles, to characterize different legs and leg joint angle sequences, as in,
e.g., [17].

For completeness, see Figure 28 for a backward tetrapod gait of the interconnected bursting
neuron model, when δ = 0.01. The initial conditions are as follows:

(54) v1(0) = −40, v2(0) = −40, v3(0) = −30, v4(0) = 10, v5(0) = 5, v6(0) = −20.

For i = 1, . . . , 6, mi, wi, and si are as in (10). The coupling strengths ci are as in (8).

Figure 28. Interconnected bursting neuron model: Backward tetrapod gait for δ = 0.01.

Recall from section 5 (Figures 15 and 16) that when α = 0.95 ≈ 1, a stable backward
tetrapod gait exists, but a stable forward tetrapod exists for α = 0.032� 1. Since α = c4

c4+c7
,

and c5 ≈ c6 if c1 ≈ c2 ≈ c3, this suggests that when couplings from front to hind legs are strong
(c4, c6 � c7), we expect to see backward tetrapod gaits, but when couplings from hind to front
legs are strong (c5, c7 � c4), forward tetrapod gaits would be observed. Similarly, in [33], a
lamprey model suggested that the tail-to-head neural connections along the spinal cord would
be stronger than those running from head to tail, despite the fact that the wave associated
with swimming travels from head to tail. That prediction was later confirmed experimentally
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in [34]. See Figure 25 (left) for examples of coexisting stable backward and forward tetrapod
gaits in a phase plane plot obtained from fitted fruit fly data. Backward tetrapod gaits have
been observed in backward-walking flies but have not been seen in forward-walking flies [35,
Supplementary Materials, Figure S1].

In the introduction we mentioned related work of Yeldesbay, Tóth, and Daun [11] in which
a nonbursting half center oscillator model for the CPG contained in three ipsilateral segments
is reduced to a set of ipsilateral phase oscillators with unidirectional coupling running from
front to middle to hind and returning to front leg units. Tetrapod, tripod, and transition
gaits were also found in their work, although the cyclic architecture is strikingly different
from our nearest neighbor coupling and it involves excitatory and inhibitory proprioceptive
feedback. It is therefore interesting to see that similar gaits appear in both reduced models,
although the bifurcations exhibited in [11] appear quite different from those illustrated here
in Figures 22 and 23. Moreover, gait transitions occur in response to changes in feedback as
well as to changes in stepping frequency.

A further gait was identified in the reduced phase difference system corresponding to the
fixed point (2/3− η, 2/3− η). Figure 29 shows an example of the gait pattern computed from
the interconnected bursting neuron model with Iext = 35.9; the coupling strengths are as in
(8) and initial conditions are as follows:

v1(0) = 20, v2(0) = −40, v3(0) = −30, v4(0) = −40, v5(0) = 5, v6(0) = −60.

Note that in this gait the phases are as follows: {(R2, L1, L3), (R1, R3), L2},(
ω̂t+

4π

3
, ω̂t, ω̂t+

4π

3
; ω̂t, ω̂t+

2π

3
, ω̂t

)
.

We are not aware of any observations of such gaits in insects.

Figure 29. Interconnected bursting neuron model: The gait corresponding to the stable fixed point (2/3 −
η, 2/3− η) in the reduced phase difference system.

In summary, we have shown that multiple tetrapod gaits exist and can be stable, and we
described the transitions in which they approach tripod gaits as speed increases. In studying
the phase reduced system on the 2-torus, we move from the special cases of section 4, in which
coupling strengths are balanced and other constraints apply, to the experimentally estimated
data sets of section 7, in which the detailed dynamics differ but tetrapod to tripod transitions
still occur.
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Appendix A. Here, we review the theory of weakly coupled oscillators which can reduce
the dynamics of each neuron to a single first order ODE describing the phase of the neuron.
In section 3, we applied this method to the coupled bursting neuron models to reduce the 24
ODEs to 6 phase oscillator equations.

Let the ODE

(55) Ẋ = f(X), X ∈ Rn,

describe the dynamics of a single neuron. In our model, X = (v,m,w, s)T and f(X) is as in
the right-hand side of (1). Assume that (55) has an attracting hyperbolic limit cycle Γ = Γ(t),
with period T and frequency ω = 2π/T .

The phase of a neuron is the time that has elapsed as its state moves around Γ, starting
from an arbitrary reference point in the cycle. We define the phase of the periodically firing
neuron at time t to be

(56) φ(t) = ωt+ φ̄ mod 2π.

The constant φ̄, which is called the relative phase, is determined by the state of the neuron
on Γ at time t = 0. Note that by the definition of phase, (55) for a single neuron is reduced
to the scalar equation

(57)
dφ

dt
= ω,

while the dynamics of its relative phase are described by

(58)
dφ̄

dt
= 0.

Now consider the system of weakly coupled identical neurons

(59)
Ẋ1 = f(X1) + εg(X1, X2),

Ẋ2 = f(X2) + εg(X2, X1),

where 0 < ε� 1 is the coupling strength and g is the coupling function. For future reference,
recall that neurons are coupled only via their voltage variables; see (7). When a neuron is
perturbed by synaptic currents from other neurons or by other external stimuli, its dynamics
no longer remain on the limit cycle Γ, and the relative phase φ̄ is not constant. However,
when perturbations are sufficiently weak, the intrinsic dynamics dominate, ensuring that the
perturbed system remains close to Γ with frequency close to ω. Therefore, we can approximate
the solution of neuron j by

(60) Xj(t) = Γ(ωt+ φ̄j(t)),

where the relative phase φ̄j(t) is now a function of time t. Over each cycle of the oscillations,
the weak perturbations to the neurons produce only small changes in φ̄j(t). These changes are
negligible over a single cycle, but they can slowly accumulate over many cycles and produce
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substantial effects on the relative firing times. The goal now is to understand how the relative
phases φ̄j(t) of the coupled neurons evolve.

To do this, we first review the concept of an infinitesimal phase response curve (iPRC),
Z(φ), and then we show how to derive the phase equation given in (15) from (14). For details
see [8, 22]; specifically, we borrow some material from [22].

Intuitively, an iPRC [36] of an oscillating neuron measures the phase shifts in response
to small brief perturbations (Dirac δ function) delivered at different times in its limit cycle
and acts like a Green’s function for the oscillating neurons. Below, we will give a precise
mathematical definition of the iPRC and explain how we compute it in our model.

Suppose that a small brief rectangular current pulse of amplitude εI and duration ∆t is
applied to a neuron at phase φ, i.e., the total charge applied to the cell by the stimulus is
equal to εI∆t. Then the membrane potential v changes by ∆v = εI∆t/C. Depending on
the amplitude and duration of the stimulus and the phase in the oscillation at which it is
applied, the cell may fire sooner (phase advance) or later (phase delay) than it would have
fired without the perturbation. For sufficiently small and brief stimuli, the neuron will respond
in an approximately linear fashion, and the iPRC in the direction of v, denoted by Zv, scales
linearly with the magnitude of the current stimulus in the limit ∆v → 0:

(61) Zv(φ) := lim
∆v→0

∆φ(φ)

∆v
.

Note that Zv only captures the response to perturbations in the direction of the membrane
potential v. However, such responses can be computed for perturbations in any direction in
state space.

There is a one to one correspondence between phase φ and each point x on the limit cycle
Γ. The phase map Φ on Γ is defined as follows:

(62) Φ(x(t)) := φ(t) = ωt+ φ̄ mod 2π,

which implies that

(63) ∇xΦ · Ẋ = ∇xΦ · f = ω.

The phase map is well defined for all points on Γ. For any asymptotically stable limit cycle,
we can extend the domain of the phase map to points in the domain of attraction of the limit
cycle. If x is a point on Γ and y is a point in a neighborhood of Γ, then we say that y has the
same asymptotic phase as x if

‖X(t, x)−X(t, y)‖ → 0 as t→∞,

where X(·, x) is the unique solution of (55) with initial condition x. Note that with x ∈ Γ,
X(t, x) = Γ(ωt + φ̄) for some φ̄. This means that the solution starting at the initial point y
in a sufficiently small neighborhood of Γ converges to the solution starting at the point x ∈ Γ
as t→∞, so that Φ(x) = Φ(y). The set of all points in the neighborhood of Γ that have the
same asymptotic phase as the point x ∈ Γ is called the isochron for phase φ = Φ(x) [36, 37].
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isochrons

x(t)

φ

Γ(t)

φ
1

2

εU

x(t)+εU

Figure 30. Isochrons and asymptotic phase.

Given the concepts of isochron and asymptotic phase, we show that the gradient of the
phase map Φ is the vector iPRC, i.e., its components are the iPRCs for every variable in (55).
Suppose that, at time t, the neuron is in state x(t) ∈ Γ(t) with corresponding phase φ1(t):

Φ(x(t)) = φ1(t) = ωt+ φ̄1(t).

At this time, it receives a small abrupt external perturbation εU with magnitude ε, where U
is the unit vector in the direction of the perturbation in state space. Immediately after the
perturbation, the neuron is in the state x(t) + εU and its new “asymptotic phase” is

Φ(x(t) + εU) = φ2(t) = ωt+ φ̄2(t).

See Figure 30 for an illustration. Using Taylor series,

(64) φ2(t)− φ1(t) = Φ(x(t) + εU)− Φ(x(t)) = ∇xΦ(x(t)) · εU +O
(
ε2
)
,

and dividing by ε, we obtain

(65)
φ2(t)− φ1(t)

ε
= ∇xΦ(x(t)) · U +O (ε) ,

and therefore, by the definition of iPRC, as ε → 0, the left-hand side of (65) is the iPRC at
φ1(t) in the direction of U :

(66) Z(φ1(t)) · U = ∇xΦ(x(t)) · U.

Hence, for any point on the limit cycle Γ, Z = ∇xΦ.
The iPRCs can also be computed from an adjoint formulation [22, 38], which is the method

adopted here. Specifically, the iPRC Z is a T -periodic solution of the adjoint equation of (55),
i.e.,

(67)
dZ

dt
= −[Jf (Γ)]T Z,

subject to the constraint that makes Z(φ1(t)) normal to the limit cycle Γ(t) at t = 0:

(68) Z(0) · Γ′(0) = 0.

In (67), Jf (Γ) = Df (Γ) is the linearization of (55) around the limit cycle Γ and Γ′(0) denotes
the vector tangent to the limit cycle at time t = 0: Γ′(0) = f(x(0)) |x∈Γ. Note that the adjoint
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system (67) has the opposite stability of the original system (55), which has an asymptoti-
cally stable solution Γ. Thus, to obtain the unstable periodic solution of (67), we integrate
backwards in time from an arbitrary initial condition. To obtain the iPRC, we normalize the
periodic solution using (68).

There is a direct way to relate the gradient of the phase map to the solution of the adjoint
equation (67). In fact, ∇xΦ(Γ(t)) satisfies the adjoint equation (67) and the normalization
condition (68) [39]. Figures 7 and 8 (first rows) show Zv, the first component of the vector
iPRC Z computed by the adjoint method, of the bursting neuron model for different values
of δ, and Iext, respectively.

Now consider the system of weakly coupled identical neurons introduced in (59). As we
discussed earlier, our goal is to understand how the relative phase φ̄j(t) of the coupled neurons
evolves slowly in time. For i = 1, 2, let Xi(t) be solutions of (59) with corresponding phases

φi(t) := Φ(Xi(t)) = ωt+ φ̄i(t).

Then by taking the derivative of φi and using (59), (60), (63), and (66), we obtain

dφi
dt

(t) = ∇xΦ(Xi(t)) · Ẋi(69a)

= ∇xΦ(Xi(t)) · [f(Xi(t)) + εg(Xi, Xj)](69b)

≈ ∇xΦ(Γ(ωt+ φ̄i(t))) ·
[
f(Γ(ωt+ φ̄i(t))) + εg(Γ(ωt+ φ̄i(t)),Γ(ωt+ φ̄j(t)))

]
(69c)

= ω + εZ(Γ(ωt+ φ̄i(t))) · g(Γ(ωt+ φ̄i(t)),Γ(ωt+ φ̄j(t))).(69d)

Using the change of variables φi(t) = ωt+ φ̄i(t), we get the following dynamics for dφ̄i/dt:

(70)
dφ̄i
dt

(t) = εZ(Γ(ωt+ φ̄i(t))) · g(Γ(ωt+ φ̄i(t)),Γ(ωt+ φ̄j(t))).

Now letting t̃ := ωt + φ̄i(t) and taking the average of the right-hand side of (70) over one
unperturbed period and using the Averaging Theorem [25, section 4.1], we obtain the following
equation for the relative phase φ̄i:

(71)
dφ̄i
dt

=
ε

T

∫ T

0
Z(Γ(t̃)) · g(Γ(t̃),Γ(t̃+ φ̄j(t)− φ̄i(t))) dt̃ =: εH(φ̄j(t)− φ̄i(t)),

where

H = H(θ) =
1

T

∫ T

0
Z(Γ(t̃)) · g(Γ(t̃),Γ(t̃+ θ)) dt̃

is the coupling function: the convolution of the synaptic current input to the neuron via
coupling g and the neuron’s iPRC Z. Using φi(t) = ωt + φ̄i(t) and (71), we can write the
phase equation of each neuron instead of relative phase equations,

(72)
dφi
dt

(t) = ω + εH(φj(t)− φi(t)),

where ε denotes the coupling strength (cf. (71)).
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