Mechanical and Aerospace Engineering Department
Undergraduate Handbook
Princeton University
Class of 2026 and beyond
This booklet supersedes all others and applies to the Classes of 2026 and beyond.

This booklet describes the undergraduate academic program of the MAE Department in more detail than that available in the Undergraduate Announcement. It provides information both to prospective concentrators and to undergraduates already enrolled in the Department. For specific course descriptions see the Undergraduate Announcement or the Graduate School Announcement as appropriate.

Mechanical and Aerospace Engineering Department Web Site:
https://mae.princeton.edu/

Chair
Naomi E. Leonard 258-5129 naomi@Princeton.EDU
D-216

Associate Chair
Michael Mueller 258-5191 muellerm@princeton.edu
D-332

Director of Undergraduate Studies
Michael G. Littman 258-5198 mlittman@princeton.edu
D-202A

Undergraduate Administrator
Theresa Russo 258-7972 tar3@princeton.edu
D-230

Director of Graduate Studies
Andrej Kosmrlj 258-8613 andrej@princeton.edu
D-404D

Graduate Administrator
Katarina Zara 258-4683 kzara@princeton.edu
D-228

Department Manager
Caasi Love 258-5168 clove@Princeton.EDU
D-214

Business Manager
Laurel Leonard 258-5139 ll5330@princeton.edu
D-210
TABLE OF CONTENTS

I. OVERVIEW .. 1

II. REQUIREMENTS ... 4
 A. INTRODUCTORY COURSES .. 4
 B. UPPERCLASS COURSES .. 4
 C. DEPARTMENTAL COURSES ... 5
 D. GENERAL INFORMATION .. 8

III. RECOMMENDED SAMPLE CURRICULA ... 9
 A. COURSE DESCRIPTIONS .. 9
 B. STANDARD SOPHOMORE CURRICULUM ... 13
 C. MECHANICAL ENGINEERING .. 14
 D. AEROSPACE ENGINEERING .. 17
 E. ENGINEERING PHYSICS PROGRAM ... 18
 F. MATERIALS SCIENCE AND ENGINEERING PROGRAM ... 20
 G. INTERDEPARTMENTAL PROGRAMS ... 22

IV. DEPARTMENTAL PRIZES ... 24

V. INDEPENDENT WORK AND PUBLISHED PAPERS .. 25

VI. POST-GRADUATION PLANS .. 30

VII. FACULTY RESEARCH INTERESTS ... 31

VIII. WHO TO SEE FOR MORE INFORMATION .. 37
 A. STUDENT DEPARTMENTAL COMMITTEE AND OTHER STUDENT COMMITTEES ... 38
 B. INTERDEPARTMENTAL PROGRAMS .. 39
 C. STUDY ABROAD AND FOREIGN EXCHANGE .. 40

APPENDIX I: REQUIREMENT SHEETS ... 42
 A. AEROSPACE ENGINEERING .. 43
 B. MECHANICAL ENGINEERING .. 45
 C. AEROSPACE AND MECHANICAL ENGINEERING .. 47
THE DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

I. OVERVIEW

The Department of Mechanical and Aerospace Engineering is concerned with the engineering science and technologies associated with ground, air, water, and space transportation, including control and dynamics of vehicles and systems, energy conversion and use, environmental effects, fluids, materials, and applied physics. To accommodate this breadth of interest, the Department offers two programs of study: Mechanical Engineering and Aerospace Engineering. Either program may be completed individually or, through careful planning and selection of technical electives, the requirements of both the Mechanical and Aerospace Engineering programs may be satisfied simultaneously. (See the Director of Undergraduate Studies for further information). Departmental students may also participate in the SEAS Engineering Physics Program or other SEAS certificate programs such as Engineering and Management Systems, Engineering Biology, Applied and Computational Mathematics, Robotics and Intelligent Systems, Materials Science in Engineering, Sustainable Energy, and the Program in Applications of Computing.

Both the Mechanical and Aerospace Engineering programs draw on courses in the underlying fundamental sciences and mathematics during the first year and introductory engineering science courses during the second year. Students are shown the creative application of knowledge for the solution of technical problems. Various aspects of engineering design, the process of devising a system to meet a need, are introduced to the student through the laboratories starting in the second year and continue through the upper class years. All students take a two semester design sequence and additional engineering science courses, performing analyses and studying applications in the areas of energy, power systems, structures, and the dynamics of machines and their control. The courses in design along with advanced courses in engineering science, enable students to undertake realistic design projects during their senior year. The programs are structured to prepare graduates for an engineering career and the ability to grow professionally.

The Department recognizes that students have a wide variety of career objectives. Some may intend to enter industry directly in an engineering capacity or to continue studies in the graduate school in engineering or applied science. Others may wish to take an engineering program in preparation for careers in business, law, or medicine. Sufficient flexibility is provided within the undergraduate program in the Department to permit meeting these and other varied objectives while acquiring a foundation in the engineering disciplines and associated problem solving skills.
Independent work is an important complement to formal course work and affords students the opportunity to collaborate closely with faculty and graduate students while working on real engineering problems. Support for student projects is available through the John Marshall II Memorial Prize, awarded annually to one or more seniors to support their experimental projects, with preference given to projects in aeronautics. Additionally, the Morgan W. McKinzie ’93 Senior Thesis Fund provides financial support for independent work or senior thesis with preference given to projects in aircraft design and propulsion. The selection is based on proposals submitted by students in the fall of the senior year for both awards. Excellence in independent work is recognized by the Department through the Donald Janssen Dike Award for Excellence in Undergraduate Research, and outstanding senior thesis is recognized through the Morgan W. McKinzie ‘93 Senior Thesis Prize both prizes are awarded on Class Day.

Departmental requirements are described in Section II. Sample curricula are presented in Section III. Titles of recent independent projects undertaken by undergraduates in the Department appear in Section V. Plans after graduation for the last five classes are summarized in Section VI and a brief description of the faculty research interests is found in Section VII. Section VIII lists "Who to See" among the faculty and students to obtain additional information.

The undergraduate programs in Aerospace and Mechanical Engineering are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Program(s) Educational Objectives

Aerospace Engineering:

Objective No. 1
Our graduates will think critically and creatively and excel in applying the fundamentals of aerospace engineering.

Objective No. 2
Our graduates will pursue a life of curiosity with a desire for learning and have the ability and self-confidence to adapt to rapid and major changes.

Objective No. 3
Our graduates will advance toward leadership in shaping the social, intellectual, business and technical worlds and by excelling in diverse careers.
Mechanical Engineering:

Objective No. 1
Our graduates will think critically and creatively and excel in applying the fundamentals of mechanical engineering.

Objective No. 2
Our graduates will pursue a life of curiosity with a desire for learning, and have the ability and self-confidence to adapt to rapid and major changes.

Objective No. 3
Our graduates will advance toward leadership in shaping the social, intellectual, business and technical worlds and by excelling in diverse careers.
II. REQUIREMENTS (See Individual Forms, Appendix I.)

Some of the requirements may be satisfied by equivalent courses. *No courses taken to satisfy Mechanical or Aerospace program requirements may be taken on a pass/fail or audit basis with the exception of courses taken in spring semester 2020 and certain exceptions for fall 2020, Spring 2021 semesters.* Students entering the Department are expected to meet the requirements for the 1st year established by the School of Engineering and Applied Science.

A. Introductory Courses (Sophomore Year)

The required introductory courses that are prerequisites for the Departmental upper class courses, **normally completed by the end of the sophomore year**, are:

1. Mechanical and Aerospace Engineering
 - MAE 206 Introduction to Engineering Dynamics
 - MAE 221 Thermodynamics
 - MAE 222 Mechanics of Fluids
 - MAE 223 Modern Solid Mechanics
 - MAE 224 Integrated Laboratory
 - MAE 321 Engineering Design

 The Sophomore Integrated Laboratory provides experiments associated with Thermodynamics (MAE 221), Mechanics of Fluids (MAE 222) and Electronics.

2. Mathematics
 - MAT 201/202 Multivariable Calculus and Linear Algebra
 - MAT 203/204 Advanced Multivariable Calculus and Linear Algebra

3. Computer Programming (School of Engineering & Applied Science requirement)
 - All BSE students must take COS 126 or ECE 115 to satisfy the BSE computing requirement.

B. Upperclass Courses (Junior and Senior Year).

To graduate, **all** Departmental students must satisfactorily complete the following requirements:

Applications of Mathematics

The following course is required for both Mechanical and Aerospace Engineers.

MAE 305 (MAT 301) Mathematics in Engineering

1 CEE205 is an acceptable substitute for MAE 223 for those students interested in structures
2 MAE 206 is a requirement for Mechanical Engineering only. It is acceptable to defer either MAE 206 or MAE 321 to later years
C. Departmental Courses

A minimum of eight upper level Departmental courses are required for the Mechanical Program and a minimum of nine upper level Departmental courses are required for the Aerospace Program, these courses must be distributed in the following manner:

1. Engineering Science Courses – In the Aerospace Program six courses are required and in the Mechanical Program five courses are required from Sections (a) (b) and (c). Core requirements for both programs are footnoted.

 (a) Dynamics and Control
 MAE 331 Aircraft Flight Dynamics
 MAE 341 Space Flight
 MAE 345 Introduction to Robotics
 MAE 433 Automatic Control Systems
 MAE 434 Modern Control

 (b) Fluid Mechanics/Thermal Sciences
 MAE 328 Energy for a Greenhouse-Constrained World
 MAE 335 Fluid Dynamics
 MAE 423 Heat Transfer
 MAE 426 Rocket and Air-Breathing Propulsion Technology
 MAE 427 Energy Conversion and the Environment: Transportation Applications
 MAE 438 Electrochemical Engineering
 CBE 341 Mass, Momentum, and Energy Transport

 (c) Materials/Structures
 MAE 323 Aerospace Structures
 MAE 324 Structure and Properties of Materials
 MSE 301 Materials Science and Engineering
 CEE 312 Statics of Structures
 CEE 361/MAE 325 Structural Analysis and Intro to Finite Element Methods
 CEE 362 Structural Dynamics and Earthquake Engineering
 CEE 364 Materials in Civil Engineering

1 MAE 331 or 341 required for Aerospace Engineers.
2 MAE 433 required for Mechanical and Aerospace Engineers.
3 MAE 335 or 423 or 438 required for Mechanical Engineers. MAE 335 only required for Aerospace Engineers.
4 MAE 427 or 426 required for Aerospace Engineers (may be used as additional engineering science elective (technical elective) in the Mechanical Program.
5 CBE 341 is an acceptable substitute for MAE 423 for Mechanical Engineers.
6 MAE 324 or MSE 301 required for Mechanical and Aerospace Engineers.
7 MAE 323 or CEE 312 or CEE 361 required for Mechanical and Aerospace Engineers.
8 CEE 362 or CEE 364 may be considered as substitutes for the materials requirement. Requires the approval of the Director of Undergraduate Studies.
2. **Engineering Design Courses** – There are three design requirements in each program. Two are satisfied by completing courses appropriate to the program (core course requirements for each program are footnoted below). The third is satisfied by completing Senior Independent Work, Senior Thesis, or Senior Project (see Section C.3). If you are completing both the Mechanical and Aerospace Programs your design requirements would be MAE 321 Engineering Design, a Mechanical Design course (MAE 412 or MAE 322 or MAE 416) and an Aerospace Design course (MAE 332 or MAE 342). You will still need to complete Senior Independent Work, Senior Thesis, or Senior Project.

 MAE 321 Engineering Design
 MAE 322 Mechanical Design
 MAE 332 Aircraft Design
 MAE 342 Space System Design
 MAE 412 Microprocessors for Measurement and Control
 MAE 416 Bioinspired Design
 CEE 477 Engineering Design for Sustainable Development

3. **Senior Independent work** - is the culminating experience for the mechanical and aerospace engineering programs. All seniors are required to participate in a research or engineering project. All projects must include elements of engineering design (*engineering design is the process of devising a system, component, or process to meet desired needs*). The following courses satisfy this requirement: MAE 439 Senior Independent Work (one semester, fall); MAE 440 Senior Independent Work (one semester, spring); MAE 442 Senior Thesis (year-long); MAE 444 Senior Project (year-long). **Students are strongly encouraged to select the year-long project or thesis option.** Senior projects are intended for teams or groups while senior thesis is intended for individuals. For senior projects or thesis, work begins in the fall but enrollment is only in spring term when a double grade is awarded. *Please note: If a student has selected to participate in a year-long project or thesis and is enrolled in only three courses during the fall semester, it is required that they will enroll in Senior Project or Thesis during the spring semester. For these students, it will NOT be possible to drop-down to a one-semester course of Independent Work without incurring a failure for Independent Work in the fall term. In Spring term you must enroll in three taught courses plus senior thesis or senior project (senior thesis and senior project count as two courses). Therefore your senior year course load will be 3 in fall and 5 in spring as opposed to 4 in fall and 4 in spring. There are NO exceptions to this rule, even if your total number of courses will exceed 36.**

 MAE 439/440 (Fall/Spring)
 MAE 442 Senior Thesis (Spring)
 MAE 444 Senior Project (Spring)

1. Required for Mechanical Engineers and Aerospace Engineers.
2. MAE 322, MAE 412 or MAE 416 required for Mechanical Engineers.
3. MAE 332 or MAE 342 required for Aerospace Engineers.
4. CEE 477 is an acceptable substitute only for Mechanical Engineers who are pursuing the Sustainable Energy Certificate Program.
5. Year-long project with enrollment in spring semester only
None of the Department requirements can be taken on a pass/fail or audit basis. All requests for substitution, other than those listed under the Engineering Physics Program (Section E), **must** be approved by the Departmental Representative **in advance**.

4. The Engineering School requirements in the **humanities and social sciences** must also be met (a minimum of seven courses covering four distinct areas from the seven areas offered). See the Undergraduate Announcement for full description and distribution areas. In addition, a one-semester writing course is required. This course is typically completed in the 1st year.

D. **General Information**

Students are encouraged to elect more than the one required semester of independent work as part of their plan of study and to participate in the extensive research programs of the Department.

Additional technical courses (which may include both undergraduate and graduate courses) can be used to pursue a specialty within the Department in greater depth.

It is also possible to participate in a variety of interdepartmental programs or expand one’s studies in the humanities or social sciences beyond the seven courses required by the School of Engineering and Applied Science.

Professional Ethics

Professional ethics is an important topic for all engineers. Honor code, adherence to University Regulations and adherence to rules in individual courses and laboratories are all part of our student’s exposure to professional ethical matters. In addition, aspects of engineering ethics are considered in engineering courses through examples and case studies. Given that mechanical and aerospace engineering works have an impact on society, the concepts of economical and safe design are the foundations of ethical conduct of practitioners in the field. Students are urged to understand ethical guidelines further in the mechanical and aerospace fields as defined by the engineering societies:

[ASME](http://www.asme.org/about-asme/governance/asme-society-policies)
[Scroll to Policy 15.7 Ethics](http://www.asme.org/about-asme/governance/asme-society-policies) (available in PDF or Word format)
[AIAA](https://www.aiaa.org/about/Governance/Code-of-Ethics)

Grading Guidelines

Course work in the MAE Department involves analysis and quantitative thinking. Student performance is usually evaluated by problem sets and examinations and sometimes by other mechanisms such as laboratory reports, group projects, class participation, or term papers. Instructors are expected, at the beginning of the semester, to specify which types of assessment will be used in determining the final course grade and the fraction by which each component will be weighted. Instructors should specify expectations for all assigned work, and the grades should reflect the degree to which students have met these expectations. An instructor may use a curve to help distribute final course grades. However, instructors should not use quotas, such as the number or percentage of A grades.
Following the Princeton University grading policy, guidelines for the assignment of each grade are given below:

Grading Definitions

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>Exceptional</td>
<td>A-</td>
<td>Excellent</td>
</tr>
<tr>
<td>A</td>
<td>Outstanding</td>
<td>B+</td>
<td>Very good</td>
</tr>
<tr>
<td>A-</td>
<td>Excellent</td>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>B+</td>
<td>Very good</td>
<td>B-</td>
<td>More than adequate</td>
</tr>
<tr>
<td>C+</td>
<td>Acceptable</td>
<td>B</td>
<td>Acceptable</td>
</tr>
<tr>
<td>C</td>
<td>Acceptable</td>
<td>C-</td>
<td>Acceptable</td>
</tr>
<tr>
<td>C-</td>
<td>Acceptable</td>
<td>D</td>
<td>Minimally acceptable</td>
</tr>
<tr>
<td>D</td>
<td>Minimally acceptable</td>
<td>F</td>
<td>Failing</td>
</tr>
</tbody>
</table>

- A+: Exceptional: Significantly exceeds the highest expectations for undergraduate work
- A: Outstanding: Meets the highest standards for the assignment or course
- A-: Excellent: Meets very high standards for the assignment or course
- B+: Very good: Meets high standards for the assignment or course
- B: Good: Meets most of the assignment or course
- B-: More than adequate: More than adequate; shows some reasonable command of the material
- C+: Acceptable: Meets basic standards for the assignment or course
- C: Acceptable: Meets some of the basic standards for the assignment or course
- C-: Acceptable: While acceptable, falls short of meeting basic standards in several ways
- D: Minimally acceptable: Acceptable Lowest passing grade
- F: Failing: Very poor performance

Office of the Dean of the College Grading Guidelines:

Honors

The determination of honors upon graduation is made by the faculty of the Department based primarily on the grade average achieved during junior and senior year in both required and elective technical courses. The student’s overall academic record and performance in independent work is also considered.

The completion of all the Departmental requirements, together with an average of 2.0* or better in the Departmental courses will lead to a Departmental recommendation that the student graduate. The decision to deny a recommendation for graduation to any student failing to meet the criteria above will be made by the Departmental faculty on the basis of a full review of the student's record.

*The grade average will be computed on the basis of equal weighing of the grades in the Departmental courses within the following numerical equivalents: A+ = 4.0, A = 4.0, A- = 3.7, B+ = 3.3, B = 3.0, B- = 2.7, C+ = 2.3, C = 2.0, C- = 1.7, D = 1.0, F = 0.0
III. RECOMMENDED SAMPLE CURRICULA

Each student's program is planned individually in consultation with their advisor or the Departmental Representative. Sample curricula for the major options within the Department are presented later in this booklet. These sample curricula should be used as recommendations only. Individual variations are possible (and encouraged) as long as the Departmental requirements are satisfied.

A. Course Descriptions

Descriptions of the courses offered appear in the Undergraduate Announcement or the Graduate School Announcement, as appropriate. Additional information can be obtained by contacting the instructor in charge. The list below summarizes information on prerequisites and other background information for each of the undergraduate upper level courses in the Department. The following information is intended to assist the student in the selection of courses in the upper class years.

228 Energy Solutions for the Next Century (Fall) – MAE 228 is an optional core requirement in the Sustainable Energy Certificate Program recommended for AB students. This course is open to Engineering and Liberal Arts Majors. Course will not serve as a Technical Elective. Note: MAE 228 will be offered in spring '22 during AY 21-22.

305 Mathematics in Engineering I (Fall/Spring) (Ordinary Differential Equations) - requires MAT 201 and MAT 202 as prerequisites with the possibility that MAT 202 may be taken concurrently. This course should be taken as early as possible in the student's program. Required for all Mechanical and Aerospace Engineering majors.

306 Mathematics in Engineering II (Spring) (Partial Differential Equations and Complex Variables) - requires MAE 305 as an absolute prerequisite. This course satisfies the second mathematics requirement in the department and in the Engineering Physics Program and is recommended for those planning to go to graduate school in engineering or applied science.

321/322 Engineering Design (Spring)/Mechanical Design (Fall)-MAE 321 is a prerequisite for MAE 322. MAE 321 is required for all Mechanical and Aerospace Engineering students. Either MAE 322, MAE 412 or MAE 416 is required for all Mechanical Engineering students.

323 Aerospace Structures - The course presents contemporary methods of mechanical and structural analysis used in Aerospace. Foundational topics covered include: equations of linear elasticity, virtual work and energy formulations, basic concepts of structural stability and vibration. An introduction to Finite Element Analysis is also presented and the students will gain familiarity with commercial Finite Element application software in the context of aerospace structures. Either MAE 323, CEE 361, CEE 312 is Required for all Mechanical and Aerospace Engineering majors.
Structure and Properties of Materials (Fall). SEAS 1st year requirements of chemistry, physics, and math are prerequisites. **Either MAE 324 or MSE 301 is required for all Mechanical and Aerospace Engineering majors.**

Structural Analysis and Intro to Finite Element Methods (Fall) – requires only sophomore Modern Solid Mechanics (MAE 223). **Either MAE 323, CEE 361 or CEE 312 is required of all Mechanical and Aerospace Engineering students.**

Energy for a Greenhouse-Constrained World (Spring) – Recommended for students interested in energy production and its influence on the environment. Requires MAE 221/222 as prerequisites.

Aircraft Flight Dynamics/Aircraft Design (Fall/Spring) - Requires the sophomore curriculum. Simultaneous enrollment in Fluid Dynamics (MAE 335) is desirable, although it is not required. **Required for Aerospace Engineering majors.** Optionally, MAE 341/342 may be taken to satisfy this requirement. (MAE 331/332 and MAE 341/342 are offered in alternate years.)

Fluid Dynamics (Fall) - requires only the sophomore curriculum as a prerequisite and Mathematics in Engineering I (MAE 305) as a co-requisite. **Required for Aerospace Engineering majors.** Either MAE 335 or MAE 423 or MAE 438 is required for all Mechanical Engineering students.

Junior Independent Work - Students may wish to complete a one term independent work project during their junior year. Students develop a topic of their own or select from a list of topics prepared by the faculty. They develop a work plan and select an adviser and a second reader. Registration for the course is accomplished at normal course selection time, while topic and advisor can be selected at any time prior to the end of the first two weeks of the appropriate semester. **These courses do not satisfy the senior independent work requirement of the department.**

Junior Independent Work with Design - Independent work with design is intended for juniors who wish to complete a one term project. Similar to 339/340, with the principal difference that the project must incorporate aspects and principles of design in a system, product, vehicle, device, apparatus, or other design element. Registration for the course is accomplished at normal course selection time, while topic and advisor can be selected at any time prior to the end of the first two weeks of the appropriate semester. **These courses do not satisfy the senior independent work requirement of the department.**

Space Flight/Space System Design (Fall/Spring) – MAE 341 requires Calculus and MAE 305 or permission of instructor. MAE 342 requires MAE 305 and MAE 341 is recommended. **Required for Aerospace Engineering majors.** Optionally, MAE 331/332 may be taken to satisfy this requirement. (MAE 331/332 and MAE 341/342 are offered in alternate years.)
344 Biomechanics and Biomaterials: From Cells to Organisms [Spring] – MAE 344 requires MAT 103, MAT 104, PHY 103 and PHY 104 or permission of instructor. 344 is an optional technical elective in the Mechanical Program.

345 Introduction to Robotics [Fall] – MAE 345 is an optional core requirement of the Robotics and Intelligent Systems Certificate Program. This course requires MAT 201 or 203, MAT 202 or 204, COS 126. Recommended: an introductory course in probability (ORF 309 or similar), and an introductory course in differential equations (MAE 305 or similar). 345 is an optional technical elective in the Mechanical Program.

354 Unmaking the Bomb: Science and Technology of Nuclear Nonproliferation, Disarmament, and Verification [Spring] – MAE 354 is an optional technical elective in the Mechanical Program. This course requires PHY 101 or PHY 102 or PHY 103 or PHY 104. MAE 305 or permission of instructor.

412 Microprocessors for Measurement and Control (Spring) - requires MAE 221 and MAE 224, or introductory knowledge of analog and digital electronics. **Either MAE 322, MAE 412 or MAE 416 is required for all Mechanical Engineering students.**

416 Bioinspired Design - For MAE Undergraduates requires MAE 321. Non-MAE Undergrads: Permission from Instructor. **Either MAE 322, MAE 412 or MAE 416 is required for all Mechanical Engineering students.**

418 Virtual and Augmented Reality for Engineers, Scientists, and Architects. Prerequisites: Basic understanding of computer programming principles and familiarity with software/hardware is highly recommended. Some experience with Unreal Engine (C++, Blueprint) and Blender is recommended but not required.

422 Introduction to the Electricity Sector (Spring) – requires MAT 103 or above. ENE/MAE [ENE 422] 422 is an optional technical elective in the Mechanical Program.

423 Heat Transfer (Fall) - requires the standard sophomore curriculum and MAE 305 as a co-requisite. **Either MAE 423 or MAE 438 or MAE 335 is required for all Mechanical Engineering students.**

426 Rocket and Air-Breathing Propulsion Technology (Spring) – Prerequisites: MAE 221 and MAE 222. **Either MAE 426 or MAE 427 is required for all Aerospace Engineering students.**

427 Energy Conversion and the Environment: Transportation Applications (Spring) - requires only the sophomore prerequisites. **Either MAE 427 or MAE 426 is required for all Aerospace Engineering students.**

432 Deep Learning and Physical Systems - This course provides an introduction to the application of deep learning to physical problems. Topics include convolutional neural networks, and graph neural networks.

433 Automatic Control Systems (Fall) - Mathematics in Engineering I (MAE 305) in addition to sophomore curriculum is a prerequisite. **Required of all Mechanical and Aerospace Engineering students.**
434 Modern Control (Spring) - A useful complement to MAE 433, treating more advanced topics in control system design. MAE 433 is a prerequisite. 434 is an optional technical elective in the Mechanical Program.

438 Electrochemical Engineering (Fall) - requires a background in thermodynamics.

Either MAE 438 or MAE 423 or MAE 335 is required for all Mechanical Engineering students

439/440 Senior Independent Work (Fall/Spring) – Senior independent work is intended for seniors who choose to complete a one term project. The independent work must incorporate aspects and principles of design, whether for a system, product, vehicle, device, software, or apparatus. Students develop a topic of their own or select from a list of topics prepared by the faculty. They develop a work plan and select an adviser. *Either of these courses will satisfy the department's senior independent work requirement.*

442 Senior Thesis (Spring) - The senior thesis is an independent study for individual students. The thesis must incorporate aspects and principles of design, whether for a system, product, vehicle, device, software, or apparatus. Work begins in the fall, but enrollment is only in spring term when a double grade is awarded. Students develop their own topic or select a topic from a list of topics prepared by the faculty. Students develop a work plan and select an advisor for their work. *This course will satisfy the department's senior independent work requirement.*

444 Senior Project (Spring) - The senior project is a year long independent study intended for students who choose to work in teams of two or more. The team or group project must incorporate aspects and principles of design, whether for a system, product, vehicle, device, software, or apparatus. Work begins in the fall, but enrollment is only in spring term when a double grade is awarded. Groups develop their own topic or select a topic from a list of topics prepared by the faculty. Groups develop a work plan and select an advisor for their work. *This course will satisfy the department's senior independent work requirement.*

463 Instabilities in Fluids: Linear and Non-linear Analysis of Waves and Patterns in the Environment (Spring) - MAE 463 is an optional technical elective in the Mechanical Program. This course requires 1st year Physics, 1st year Mathematics and MAE 305. (MAE 305 may be taken concurrently with the Instructor’s permission).
B. Standard Sophomore Curriculum

The recommended sophomore curriculum is common to all Departmental students, except Engineering Physics students who are allowed certain substitutions (see Section E).

(T.E. = Technical Elective)
(N.T.E. = Non Technical Elective)

SOPHOMORE YEAR

Option 1

FALL*
- Mathematics
- MAE 223 Modern Solids Mechanics
- MAE 221 Thermodynamics
- N.T.E. or Materials
- N.T.E

SPRING
- Mathematics
- MAE 206 Introduction to Engineering Dynamics*
- MAE 222 Mechanics of Fluids
- MAE 224 Laboratory
- N.T.E.

Option 2

FALL*
- Mathematics
- MAE 223 Modern Solids Mechanics
- MAE 221 Thermodynamics
- N.T.E. or MAE 321 Engineering Design**
- N.T.E

SPRING
- Mathematics
- MAE 321 Engineering Design**
- MAE 222 Mechanics of Fluids
- MAE 224 Laboratory
- N.T.E.

Option 3

FALL*
- Mathematics
- MAE 223 Modern Solids Mechanics
- MAE 221 Thermodynamics
- N.T.E. or Materials
- N.T.E

SPRING
- Mathematics
- MAE 206 Introduction to Engineering Dynamics*
- MAE 321 Engineering Design**
- MAE 222 Mechanics of Fluids
- MAE 224 Laboratory

*MAE 206 is required for Mechanical Engineers only.

**Note that MAE 322 requires MAE 321.

It is ok to defer MAE 305 to the junior year but is strongly recommended to take sophomore year especially if you are planning to take MAE 341 and course is being offered during your junior year. Plan ahead if deferring 206 or 321.

The School of Engineering and Applied Science computer programming requirement must be satisfied by the end of the Sophomore Year.

Some sample programs are presented to indicate the major options within the Department

***Note that the course load for this recommended curriculum (5 courses each semester) is heavier in the fall than in the spring. This is because MAE 221 has a laboratory, whereas MAE 222 does not. Instead, the laboratory experience in the spring is listed as a separate course, MAE 224. The time commitment for MAE 224 is about one-half of a regular course. Therefore, the course load in the fall is effectively 5 ½ courses, whereas the course load in the spring is about 4 ½ courses. The course grade in MAE 224 is determined from the laboratory course work from both the fall and spring terms.
C. Mechanical Engineering

Students desiring an emphasis on analysis of the dynamics and control of engineering devices can follow the **Dynamics Systems** Option. Students desiring an emphasis on power generation and conversion can elect to follow the **Energy Sciences** Option. Students desiring an emphasis on design can follow the **Design** Option. It is however, not necessary to rigidly follow either of these options as long as the requirements in Section II are satisfied.

1. Dynamic Systems (Typical program)

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE 433 Automatic Control Systems</td>
<td>T.E. or MSE 301 Materials Science and Engineering (if taken in the spring)</td>
</tr>
<tr>
<td></td>
<td>MAE 322 Mechanical Design*</td>
<td>MAE 323 Aerospace Structures or CEE 312 Statics of Structures (if taken in the spring)</td>
</tr>
<tr>
<td></td>
<td>MAE 324 Structure and Properties of Materials</td>
<td>MAE 321 Engineering Design or MAE 206 Introduction to Engineering Dynamics*</td>
</tr>
<tr>
<td></td>
<td>CEE 361 Matrix Structural Analysis and Introduction to finite-Elements Methods (if taken in the fall)</td>
<td>MAE 423 Heat Transfer or 438 Electrochemical Engineering (if taken in the Spring)</td>
</tr>
<tr>
<td></td>
<td>MAE 335 Fluid Dynamics (if taken in the Fall)</td>
<td>*If MAE 321 was taken in the previous spring</td>
</tr>
</tbody>
</table>

*If MAE 321 was taken in the previous spring

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Senior Independent Work or Senior Thesis or Senior Project</td>
<td>Senior Independent Work or Senior Thesis or Senior Project</td>
</tr>
<tr>
<td></td>
<td>MAE 345 Introduction to Robotics</td>
<td>Mech Design (if taken in spring); MAE 412 Microprocessors for Measurement and Control</td>
</tr>
<tr>
<td></td>
<td>Mech Design (if taken in the fall); MAE 322 Mechanical Design* or MAE 416 Bioinspired Design</td>
<td>T.E./N.T.E.</td>
</tr>
<tr>
<td></td>
<td>N.T.E.</td>
<td>N.T.E.</td>
</tr>
</tbody>
</table>

*If MAE 321 was taking in the previous spring
2. Energy Sciences (Typical Program)

JUNIOR YEAR

FALL
- MAE 433 Automatic Control Systems
- MAE 324 Materials Science and Engineering
- CEE 361 Matrix Structural Analysis and Introduction to finite-Elements Methods (if taken in the Fall)
- T.E./N.T.E.
- N.T.E.

SPRING
- MAE 328 Energy for a Greenhouse-Constrained World
- Mech Design (if taken in the spring); MAE 412 Trains
- MAE 423 Heat Transfer or 438 Electrochemical Engineering (if taken in the Spring)
- Senior Independent Work or Senior Thesis or Senior Project
- N.T.E.

*If not taken in the sophomore year

SENIOR YEAR

FALL
- Mech Design (if taken in the Fall); MAE 322 Mechanical Design or MAE 416 Bioinspired Design
- Senior Independent Work or Senior Thesis or Senior Project
- MAE 335 Fluid Dynamics (if taken in the Fall)

SPRING
- MAE 333 Automatic Control Systems
- MAE 324 Materials Science and Engineering
- CEE 361 Matrix Structural Analysis and Introduction to finite-Elements Methods (if taken in the Fall)
- T.E./N.T.E.

SUGGESTED TECHNICAL ELECTIVES

FALL
- MAE 331 Aircraft Flight Dynamics
- MAE 341 Space Flight
- MAE 322 Mechanical Design
- COS 217 Introduction to Programming Systems
- COS 226 Algorithms and Data Structures
- ECE 206 Contemporary Logic Design

SPRING
- MAE 328 Energy for a Greenhouse-Constrained World
- Mech Design (if taken in the spring); MAE 412 Trains
- MAE 423 Heat Transfer or 438 Electrochemical Engineering (if taken in the Spring)
- Senior Independent Work or Senior Thesis or Senior Project
- N.T.E.

*If not taken in the sophomore year

SUGGESTED NON-TECHNICAL ELECTIVES

FALL
- ECO 100 Introduction to Microeconomics

SPRING
- ECO 101 Introduction to Macroeconomics
3. Design (Typical program)

JUNIOR YEAR

FALL
- MAE 433 Automatic Control Systems
- CEE 361 Matrix Structural Analysis and Introduction to finite-Elements Methods (if taken in the Fall)
- MAE 324 Structure and Properties of Materials
- MAE 335 Fluid Dynamics (if taken in the Fall)
- MAE 339D Independent Work with Design* (if taken in the fall)
- Mathematics Elective

SPRING
- T.E. or MSE 301 Materials Science and Engineering
- MAE 323 Aerospace Structures or CEE 312 Statics of Structures (if taken in the spring)
- MAE 340D Independent Work with Design* (if taken in the spring)
- MAE 321 Engineering Design**
- MAE 423 Heat Transfer or MAE 438 Electrochemical Engineering (if taken in the spring)
- **If not taken earlier

SENIOR YEAR

FALL
- Senior Independent Work or Senior Thesis or Senior Project
- MAE 345 Introduction to Robotics
- Mech Design (if taken in the Fall); MAE 322 Mechanical Design or MAE 416 Bioinspired Design
- N.T.E.

SPRING
- Senior Independent Work or Senior Thesis or Senior Project
- Mech Design (if taken in the spring); MAE 412 Microprocessors for Measurement and Control
- T.E./N.T.E.
- N.T.E.

*MAE 339D or 340D will satisfy the Additional Engineering Science Requirement in the Mechanical Program

Please note: Most required courses have an option to take fall or spring this will allow the student to take N.T.E. the opposite semester.

4. General Mechanical Engineering

Students not wishing to specialize in any one of the areas above (1, 2, or 3) can select any mix of the three sample curricula, provided they meet the requirements stated in Section II. These are sample programs. You do not need to follow these as indicated.
D. Aerospace Engineering

Students wishing to concentrate their study on vehicles in air and space follow the curriculum in Aerospace Engineering (see Section II for required courses). A typical program is listed below:

JUNIOR YEAR

FALL
- MAE 433 Automatic Control Systems
- MAE 3X1 Flight Dynamics*
- CEE 361 Matrix Structural Analysis and Intro to Finite Element Methods (if taken in the fall)
- N.T.E.

*Note: Either MAE 331 Aircraft Flight Dynamics -or- MAE 341 Space Flight – Aircraft or Space Flight must be completed in their respective sequence for credit. If MAE 331 is elected, MAE 335 should be taken concurrently and prior to MAE 426. MAE 206 is a prerequisite for MAE 3X1.

SPRING
- MAE 3X2 Design*
- MSE 301 Materials Science and Engineering
- MAE 323 Aerospace Structures or CEE 312 Statics of Structures (if taken in the spring)
- MAE 321 Engineering Design*
- N.T.E.
 - N.T.E. or T.E. *If not taken earlier

*(Note: Either MAE 332 Aircraft Design -or- MAE 342 Space System Design - Aircraft or Space Flight must be completed in their respective sequence for credit)

SENIOR YEAR

FALL
- Senior Independent Work or Senior Thesis or Senior Project
- MAE 335 Fluid Dynamics
- N.T.E
- N.T.E.

SPRING
- MAE 434 (or see list of technical electives below)
- MAE 427 Energy Conversion and the Environment: Transportation Applications or MAE 426 Rocket and Air-Breathing Propulsion Technology
- N.T.E.
- Senior Independent Work or Senior Thesis or Senior Project

SUGGESTED TECHNICAL ELECTIVES

FALL
- MSE 302 Laboratory Techniques in Materials Science and Engineering
- COS 217 Introduction to Programming Systems
- COS 226 Algorithms and Data Structures
- ECE 206 Contemporary Logic Design

SPRING
- ECE 201 Information and Signals
- ECE 203 Electronic Circuit Analysis, Design and Implementation
- COS 217 Introduction to Programming Systems
- COS 226 Algorithms and Data Structures
- MAE 434 Modern Controls
- MAE 412 Microprocessors for Measurement and Control
E. Engineering Physics Program

Students with a strong interest in applied science and plans for graduate study may wish to participate in the Engineering Physics Program. Students should contact the Engineering Physics Program Director when they join the Department. The program requirements include six Physics courses beyond the 1st year level (the sequence Physics 208, 305 is required), and two upperclass mathematics courses (300 and 400 level).

SOPHOMORE YEAR

FALL
- Mathematics
- PHY 207 From Classical to Quantum Mechanics
- MAE 221 Thermodynamics
- N.T.E.

SPRING
- Mathematics
- PHY 208 Principles of Quantum Mechanics
- MAE 222 Mechanics of Fluids
- MAE 224 Integrated Engineering Science Laboratory
- N.T.E.

Engineering Physic students may take PHY 207 From Classical to Quantum Mechanics in place of MAE 223 and PHY 208 Principles of Quantum Mechanics in place of MAE 206

JUNIOR

FALL
- Mathematics
- PHY 301 Thermal Physics
- CEE 361 Matrix Structural Analysis and Introduction to Finite Element Methods (if taken in the fall)
- MAE 433 Automatic Control Systems
- N.T.E.

SPRING
- Mathematics
- PHY 304 Advanced Electromagnetism
- MSE 301 Materials Science and Engineering
- MAE 323 Aerospace Structures or CEE 312 Statics of Structures (if taken in the spring)
- MAE 321 Engineering Design*
- N.T.E.
*If not taken earlier

SENIOR

FALL
- PHY 305 Introduction to the Quantum Theory
- MAE 335 Fluid Dynamics
- N.T.E.
- Begin Senior Thesis

SPRING
- PHY 408 Modern Classical Dynamics
- MAE 442 Senior Thesis
- N.T.E.
- T.E./N.T.E.
- MAE 412 Trains

If PHY 301 is completed, this course can be used to satisfy one of the engineering science requirements.
SUGGESTED TECHNICAL ELECTIVES

<table>
<thead>
<tr>
<th>FALL</th>
<th></th>
<th>SPRING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 511 Experimental Methods</td>
<td></td>
<td>MAE 328 Energy for a Greenhouse</td>
<td></td>
</tr>
<tr>
<td>MAE 521 Optics and Lasers</td>
<td></td>
<td>MAE 555 Nonequilibrium Gas Dynamics</td>
<td></td>
</tr>
<tr>
<td>MAE 523 Electric Propulsion</td>
<td></td>
<td>PHY 312 Experimental Physics</td>
<td></td>
</tr>
<tr>
<td>MAE 527 Physics of Gases</td>
<td></td>
<td>MAE 434 Modern Control</td>
<td></td>
</tr>
<tr>
<td>PHY 406 Modern Physics II</td>
<td></td>
<td>MAE 427 Energy Conversion and the Environment: Transportation Applications</td>
<td></td>
</tr>
</tbody>
</table>

Note: This sample Engineering Physics program is in coordination with the Mechanical Engineering program. The Aerospace program may also be followed. The Undergraduate Office can provide Requirement Forms, such as those located in the back of this booklet, for students pursuing Engineering Physics and the Mechanical Engineering Program or Engineering Physics and the Aerospace Engineering Program.
F. Materials Science in Engineering Program

Students wishing to concentrate in materials engineering may choose courses that satisfy both the Departmental course requirements for mechanical or aerospace engineering and the Certificate in Materials Science and Engineering. **The certificate program requires:**

1. One core course in materials (MAE 324, MSE 301, or CEE 364);
2. One materials experimental methods course (MSE 302, MSE 505, CHM 371 or ECE 208).
3. Three additional approved courses from the materials elective list, and;
4. A two-semester senior thesis on a materials topic approved by the certificate committee.

The Departmental program(s) require:

For the Mechanical Program only: Five engineering science courses (including one materials course), mathematics elective, and three design courses (two taught design courses and one semester of senior independent work or two semesters of senior thesis). Senior independent work or senior thesis will satisfy the third design requirement. Specified materials science technical electives will qualify as engineering science technical electives in the Mechanical program. See list of engineering science courses on page 6 of this booklet.

A typical course sequence following the Mechanical Engineering Program and Materials Certificate Program is as follows:

SOPHOMORE

FALL

- MAE 221 Thermodynamics
- Mathematics or NTE
- MAE 324 Structure and Properties of Materials
- MAE 223 Modern Solid Mechanics
- MAE 305 Math in Engineering I

SPRING

- MAE 206 Intro to Engineering Dynamics
- MAE 321 Engineering Design
- MAE 222 Fluid Mechanics
- MAE 224 Integrated Engineering Science Laboratory
- N.T.E.

JUNIOR

FALL

- CEE 361 Matrix Structural Analysis and Introduction to Finite-Element Methods (if taken in the fall)
- MSE 302 Materials Lab
- MAE 335 Fluid Dynamics (if taken in the fall)
- MAE 433 Automatic Control Systems
- N.T.E.

SPRING

- MAE 412 Microprocessors for Measurement and Control
- MAE 323 Aerospace Structures or CEE 312 Statics of Structures (if taken in the spring)
- MAE 423 Heat Transfer or MAE 438 Electrochemical Engineering (if taken in the spring)
- Materials T.E.
- N.T.E.
SENIOR

FALL
- Begin Senior Thesis
- CBE 415 Polymers
- MAE 322 Engineering Design
- N.T.E.

SPRING
- MAE 442 Senior Thesis
- Materials T.E.
- N.T.E.
- N.T.E.

NOTE: Those students wishing to follow the Aerospace Engineering Program should consult with their Academic Advisor or Departmental Representative for careful selection of technical electives. For the Aerospace Program MAE 331/332 Flight Dynamics and Aircraft Design –or- MAE 341/342 Space Flight and Space Craft Design are required as well as MAE 427 Energy Conversion and the Environment: Transportation Applications or MAE 426 Rocket and Air-Breathing Propulsion Technology. MAE 335 Fluid Dynamics must be taken in a fall semester in lieu of MAE 423 Heat Transfer.

For students completing both the Mechanical and Aerospace Engineering Programs three taught design courses are required (MAE 321 Engineering Design, a Mechanical Design Course, and an Aerospace Design course) as well as senior independent work or senior thesis.

SUGGESTED TECHNICAL ELECTIVES:

One of the attractive features of the program is the opportunity to choose a focus in a particular area of materials science and engineering that is of special interest to the student. For example, students may choose electives in the areas of: micro-and nano-scale materials science and engineering; biomedical materials and bioengineering, materials modeling, or structural materials.

Other areas of concentration may also be developed, depending on student interest. The technical electives may be selected from the list of courses shown below. Students may also consider to taking graduate level courses for technical electives.

Approved Undergraduate Courses in Materials Science and Engineering:

CHM 303/304 Organic Chemistry
CHM 305/306 Physical Chemistry
CHM 406 Advanced Physical Chemistry
CHM 407/408 Inorganic Chemistry
CBE 415 Polymers
CBE 421 Catalytic Chemistry
ECE 341 Solid-State Devices
ECE 342 Principles of Quantum Engineering
ECE 351 Electromagnetic Field Theory and Physical Optics
ECE 352 Physical Optics
ECE 441/442 Solid-State Physics I, II
ECE 453 Optical Electronics
MAE 324 Structure and Properties of Materials
MAE 344 Biomechanics and Biomaterials: From Cells to Organisms
PHY 304 Advanced Electromagnetism
PHY 305 Introduction to Quantum Theory
G. Interdepartmental Programs

1. Program in Applications of Computing

Students with interests in computer science may use upper class electives to satisfy the requirements of this program. Students should contact the PAC program Director for specific details; see Section VIII.

2. Program in Applied and Computational Mathematics

Students with interests in applied mathematics may use upper class electives to satisfy program requirements in Applied and Computational Mathematics. Students should contact PACM Program Director for further details; see Section VIII.

3. Program in Engineering Biology

Students interested in engineering biology may use upper class electives to satisfy the requirements of this program. Students should contact the EB Program Director for specific details; see Section VIII.

4. Program in Engineering and Management Systems

Students with a strong interest in the systems and management aspect of an engineering career may combine Departmental courses with the requirements of the Program in Engineering and Management Systems. Those wishing to pursue this program should see the EMS Program Director (see Section VIII) early in their academic career. A number of the program requirements satisfy Departmental requirements as well.

5. Program in Engineering Physics

Students interested in engineering physics may use upper class electives to satisfy the requirements of this program. There are also pre-approved substitutions in the sophomore level MAE requirements for students participating in this program (see page 18). Students should contact the EP Program Director for specific details of the program; see Section VIII.

6. Program in Materials Science and Engineering

Students interested in materials science and engineering may use upper class electives to satisfy the requirements of this program. Students should contact the MSE Program Director for specific details; see Section VIII.

7. Program in Robotics and Intelligent Systems

Students interested in robotics and intelligent systems may use upper class electives to satisfy the requirements of this program. Students should contact the RIS Program Director for specific details; see Section VIII.
8. **Program in Sustainable Energy**

Students interested in sustainable energy may use upper class electives to satisfy the requirements of this program. Students should contact the PSE Program Director for specific details; see Section VIII.

Sufficient flexibility is present in the Department Program to permit students to participate in other certificate programs such as the one offered by the Woodrow Wilson School.
IV. DEPARTMENTAL PRIZES

Six Departmental prizes are awarded each year at Class Day.

THE GEORGE BIENKOWSKI PRIZE: This is a financial award given in honor of George Bienkowski, former Professor and Undergraduate Representative. This award is given to a senior student(s) of sound academic standing and who has contributed to the department and engineering through their service during their career at Princeton.

THE JOHN MARSHALL II MEMORIAL PRIZE: This prize provides financial support for undergraduate independent work with preference given to projects in aerospace engineering. The prize is given in memory John Marshall II, ’72. Prize winners are selected by the Undergraduate Faculty Committee based on written proposals submitted early in the fall. Additionally, a prize will be awarded in spring.

DONALD JANSSEN DIKE AWARD FOR EXCELLENCE IN UNDERGRADUATE RESEARCH: In memory of Donald Janssen (D.J.) Dike, ’51. This financial award is presented to a senior(s) who in the opinion of the faculty have excelled in independent work.

SAU-HAI LAM *58 PRIZE IN MECHANICAL AND AEROSPACE ENGINEERING
Established by a donation from Professor Sau-Hai Lam, an emeritus faculty member, to the Mechanical and Aerospace Engineering Department, this prize was established to recognize graduating seniors and possibly juniors for their outstanding academic achievement.

MORGAN W. MCKINZIE ’93 SENIOR THESIS FUND AND PRIZE
In memory of Morgan W. McKinzie ’93. The Senior Thesis fund provides financial support for independent work with preference given to projects in aircraft design and propulsion. The Senior Thesis prize is a financial award for the best Senior Thesis in the MAE Department as determined by the faculty.

ENOCH J. DURBIN PRIZE FOR ENGINEERING INNOVATION
This prize, established in memory of faculty emeritus Enoch J. Durbin, is awarded to a senior in the Department where independent work or thesis has shown special interest and aptitude in engineering innovation.
V. INDEPENDENT WORK AND STUDENT PUBLISHED PAPERS

A good indication of the interest of students in the MAE Department is the independent work they have chosen. Topics for the Class of 2022 are given below.

Class of 2023 Senior Thesis Individual Projects

Abhinav Agarwal: Stereo Vision for Autonomous Underwater Robotic Systems

Kristen Ahner: Optimizing Under Uncertainty: Robust Trajectory Design for Uranus

Sophie Amiton: "A Home Away from Home: Design of Modular Crew Quarters for a Commercial Space Station"

Saad Ayub: Controlled Positioning of a B-dot Probe in Vacuum Tests of a Plasma Thruster

Alex Ban: Resolution and Downtime Improvements for in situ Liquid Cell Transmission Electron Microscopy

Delia Batdorff: Optimizing Variable Combinations and Training Sample Sizes from DNS Simulations for Premixed Turbulent Combustion

Kurt Bernard: The Design and Development of an Autonomous Shopping Cart

Jacob Bleil: Systematic Development of a Phased Speaker Array for Optimal 3D Audio Reproduction

Griffin Brooks: Mechanically Actuated Fashion

Jeb Carter: Knot the Average Boat: Development of a Semi-Autonomous Sailing Platform

Matthew Coleman: Latent Diffusion Policies

Gavin Cotter: Design and Analysis of a Plasma Assisted Cement Production Reactor with Low-Carbon Emission

Yusuf Fashanu: Bio-inspired Design: Avian Inspired Morphing Wing

Rodrigo Fernandez: Reshaping Rockets: Design, Testing and Construction of a Variable Geometry Rocket Nozzle

Ayomikun Gbadamosi: A Machine-Learning Approach to Stellarator Plasma Confinement Design and Optimization in Fusion Reactors

Hudson Godfrey: Design and Test of a Miniature Vacuum Chamber for the Comparison of Gas Shielding in Laser-Based Powder Bed Fusion for Additive Manufacturing

John Gonzales: An Application of the Finite Set Statistics to Space-based Multi-object Tracking

Michelle Ho: Improving Multi-Robot Exploration with Deep Learning & Bayesian Decision Making

Kathryn-Alexa Kennedy: Simulation of Oceanic Wakes from Flow Around Offshore Wind Turbine Foundations and their Creation of Sediment Trails

Alexis Laudenslager: Characterizing Cutting Methods for Collagen Membranes Used in Orthopedic Surgery

Jonathan Melkun: Design of a One-Eyed Face Tracking Robot to Facilitate Human-Robot Interaction

Ken Nakamura: Opinion-guided Games: Strategic Coordination Through Gradient-based Opinion Dynamics

Felix O'Mahony: A Model for the Improved Representation of High Frequency Signals in Convolutional Neural Network Architectures

Christine Ohenzuwa: Learning Population Diversity in a Heterogeneous Multi-Agent Environment

Yimika Oke: Design and Evaluation of Bio-inspired Deployable Flying Fish Pectoral Fins

Shannen Prindle: Design and Test of a CubeSat Reaction Wheel Control Subsystem

Lauren Rawson: 3D Printing of Complex Materials for Biomedical and General Use

Agnes Robang: Deep learning modeling of the filtered generalized progress variable dissipation rate in turbulent premixed combustion

Juan Rohrer: Reducing Drag of Small UAVs with Passively Adaptive, Bio-Inspired Wingtips

Amisha Srivastava: Comfortable and Sustainable Dorm Temperatures: Analyzing Legacy Heating Infrastructure and Improving Controls at Princeton University

Jailany Thiaw: Plasma coffee: Exploring the use of PS-pulsed lasers as a way to expedite coffee extraction in cold brew

Brady Wedbush: Optimization of Spark Advance Timing for Electronic Fuel Injection

Richard Zhu: Analysis and Experimental Research on Pneumatic Atomization of Solutions via Triple Coaxial Nozzle
Class of 2023 Senior Project (Team or Group Project)

Yujin Angolio/Mo Hamza/Karla Soto Cuevas: Moyuka: Fencing Target Practice Assistant
Timothy Kopec/Ethan Lam: Moisture-Driven Carbon Capture: An Examination of Activated Carbon Loaded with Anions
Eric Love/Thomas Olson/Bradley Rindos: Lock It Up: Exploring and Prototyping the Smart Tourniquet

Class of 2023 Senior Independent Work (One Semester Project)

Carl Borsotti: Exploration on the Potential and Feasibility of Gravity Based Energy Storage
Brook Mesfin: Comparative Analysis of Thermal Performance in Bolted Joints: A Finite Element Simulation and Experimental Study
Independent Work Projects or Senior Thesis research may result in a published paper with the student’s advisor. Here are some examples of student published papers:

- Modeling Unsteady Forces and Pressures on a Rapidly Pitching Airfoil, APS Division of Fluid Dynamics, November 2014 (N. Schiavone, S. Dawson, C. Rowley, and D. Williams)

Development of a Mars Ascent Vehicle Using In-Situ Propellant Production, 2014 AIAA Space Ops Conference, May 2014, Pasadena, CA (L. Paxton, D. Vaughan)

Localized Microwave Plasma Grid by Laser-Designation, AIAA-2011-4000, 42nd Plasmadynamics and Lasers Conference in conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD), Honolulu, Hawaii (M.R. Edwards et al.)

VI. POST-GRADUATION PLANS

An indication of the career plans of the graduates of the Department obtained from the immediate post graduation plans of the Classes of 2019 through 2023 are charted below.
VII. FACULTY RESEARCH INTERESTS

Christine Allen-Blanchette
My work investigates the integration of physics-based constraints in deep neural network modeling with the goal of improving model interpretability and performance in previously unseen settings.

Craig B. Arnold
Research in the general area of materials synthesis and processing with interests in energy storage and conversion, additive and 3D manufacturing, microfluidics, and laser processing. Current projects include laser-induced microfluidic jetting, 3D and additive manufacturing of metal alloys, mechanics of batteries, electrochemical energy harvesting, and advanced optics for real-time 3D imaging. Research includes a mix of both experimental and theoretical projects ranging from fundamental science through product commercialization.

Ryne Beeson
In my research, I develop mathematical theory and algorithms for improvement of solutions to optimal trajectory, guidance, navigation, and estimation problems. I use theory and techniques from optimal control, optimization, numerical methods, nonlinear filtering, inverse problems, probability, information theory, machine learning, and dynamical systems. I have an interest in applications to estimation of Earth and space weather/climate (high dimensional chaotic systems with sparse sensing), automated global spacecraft trajectory optimization, spacecraft guidance and navigation, and space situational awareness.

Emily A. Carter
Development of accurate and efficient quantum mechanics simulation techniques, including embedded correlated wavefunction and orbital-free density functional theories. Discovery and design of materials for producing chemicals, materials, and fuels from renewable energy, with a specific emphasis on carbon dioxide utilization.

Edgar Y. Choueiri
Spacecraft propulsion, plasma dynamics, astronautics, space plasma physics, acoustics, 3D audio, sound perception and localization.

Daniel J. Cohen
We do a variety of bioengineering, biomechanics, and biomaterials research with living tissues and engineered micro-devices. Cells are easy and fun to work with and we will teach you what you need to know! Current projects include micro-patterning of tissues, studying the swarm behaviors of hundreds of thousands of cells as they heal injuries, building tools to apply forces and electric fields to cells, and more. Our work is highly interdisciplinary and there will be many opportunities for independent projects. Learn more about our work and projects at CohenGroup!
Luc Deike
Research focuses on multi-phase turbulent systems, involving waves, drops and bubbles in turbulent environment. We develop laboratory and numerical experiments to explore the physics at play and build simple models. Our work is motivated by environmental and industrial applications, as diverse as the statistics of waves in the ocean, wave impact on structures, floating ice sheet, gas transfer by surface breaking waves in the ocean, spray dynamics and cloud formation in the atmosphere.

Alexander Glaser
Research focuses on the technical aspects of nuclear-energy use and related fuel-cycle technologies, and specifically on questions related to the proliferation of nuclear weapons. Analyses are supported by computer simulations of reactors. Additional projects on nuclear nonproliferation and disarmament, including nuclear forensics and nuclear archaeology. Web: http://nuclearfutures.princeton.edu

Mikko Haataja
Research focuses on theoretical and computational materials science and physical biology. Current work includes studies of microstructure formation during solid-solid phase transformations, dislocation dynamics, mechanics of bulk metallic glasses, and evolving microstructures in biology.

Kelsey Hatzell
Our group works on printable materials and understanding electrochemistry at interfaces. We also look at solution processed material synthesis of low dimensional materials for energy storage and water desalination application. We are interested in understanding far-from equilibrium material systems and utilize a suite of x-ray and neutron technique to understand these systems.

Marcus Hultmark
Research interests are in experimental and theoretical fluid mechanics. Problems involving heat, mass and momentum transfer are being studied, including atmospheric flows, wind energy and bio inspired flows. Most work involves water or wind tunnels and some involve unique instrumentation.

Jesse Jenkins
Energy systems engineer with a focus on the rapidly evolving electricity sector, including the transition to zero-carbon resources, the proliferation of distributed energy resources, and the role of electricity in economy-wide decarbonization. Jesse’s research focuses on improving and applying optimization-based energy systems models to evaluate low-carbon energy technologies, policy options, and robust decisions under deep uncertainty.
<table>
<thead>
<tr>
<th>Name</th>
<th>Research Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egemen Kolemen</td>
<td>Research focuses on the application of dynamics and control theory to experimental plasma physics, primarily to address the challenges of fusion reactor design. I analyze the dynamics of complex plasma phenomena using applied mathematics and control theory with the aim of designing and implementing novel control techniques, which I then use to build real-time control systems from the ground up. Current research includes reduction of the heat flux to the fusion reactor vessel using advanced magnetic divertor configuration, detachment, and radiation control; and disruption avoidance against instabilities such as Neoclassical Tearing Modes and Resistive Wall Modes.</td>
</tr>
<tr>
<td>Andrej Kosmrlj</td>
<td>Research combines elements of mechanics, physics and biology. Research projects include design and mechanics of metamaterials with unusual mechanical properties; biomechanics; mechanics in morphogenesis during embryo development; statistical mechanics of microscopic structures in the presence of thermal fluctuations and disorder, with potential applications for flexible electronics, sensitive force sensors or micro-actuators.</td>
</tr>
<tr>
<td>Chung King Law</td>
<td>Research interests include droplet and spray combustion, formulation of synthetic and high-energy fuels, flame structure studies, ignition and extinction phenomena, soot formation in flames, climatic issues including hydrogen combustion and safety, combustion synthesis of materials, laser diagnostics and numerical simulation of flames.</td>
</tr>
<tr>
<td>Naomi E. Leonard</td>
<td>Control and dynamics with application to movement and decision-making of technological systems, such as autonomous vehicles and robotic systems, and to natural systems, such as animals. Biology-inspired, coordinated control of multi-vehicle networks. Mobile sensor networks and environmental monitoring. Modeling and analysis of collective motion and collective decision-making in animal groups such as fish schools, honeybee swarms, and zebra herds. Decision dynamics of mixed teams of humans and robots.</td>
</tr>
<tr>
<td>Michael G. Littman</td>
<td>Prof. Littman also supervises student projects for improving laboratory experiments and lecture demonstrations for his courses on microcomputer control, history of engineering, and motorcycle design.</td>
</tr>
<tr>
<td>Name</td>
<td>Research Interests</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Anirudha Majumdar</td>
<td>My research interests lie in developing algorithmic tools that push highly agile robotic systems to the brink of their hardware limits while ensuring that they operate in a provably safe manner despite uncertainty in their environment and dynamics.</td>
</tr>
<tr>
<td>Julia Mikhailova</td>
<td>Attosecond science, generation of attosecond pulses, light-matter interaction; ultrafast optics, generation and applications of ultrashort light pulses with the controlled carrier-envelope phase; optical parametric chirped pulse amplification; high-field physics, relativistic laser-plasma interaction, relativistic high-harmonic generation, laser-driven particle acceleration, quantum optics, entanglement of quantum states, biphoton states in spontaneous parametric scattering of light, filamentation of light packets in air and solids; waveguides, nonlinear fiber optics, photonic-crystal fibers; nanowaveguide sensors.</td>
</tr>
</tbody>
</table>
Radhika Nagpal
My lab studies Self-organizing Systems and Collective Artificial Intelligence; we investigate many topics on the border of Robotics, AI, and Biology. Two main areas are: (1) Biologically-inspired Robot Collectives, including novel hardware design for robot swarms, decentralized collective algorithms/theory, and global-to-local swarm programming (2) Biological Collectives, including mathematical models and field experiments with social insects and cellular morphogenesis.

Daniel M. Nosenchuck
Experimental/computational fluid mechanics and instrumentation. Active control of boundary layer instabilities and turbulence. Product design and manufacture, rapid prototyping; entrepreneurship.

Clarence Rowley
Dynamical systems modeling of fluids, both to better understand the physics of complex flows, and to control these flows. Model reduction and symmetry reduction for bifurcation analysis and control. Numerical methods, and applications of geometric methods in fluid mechanics.

Aditya Sood
Our research interests lie in the areas of nanoscale thermal transport, ultrafast science, and nanoelectronics. We enjoy building tools to visualize dynamic processes in materials to understand and control the transport of energy and matter at the nanoscale. We love studying basic phenomena that are at the heart of technological challenges in energy conversion, energy storage, and energy-efficient computing. Current research directions: laser-based thermal metrology, atomically-resolved thermometry, ultrafast X-ray & electron diffraction, energy dissipation in 2D materials, electronics thermal management, ultrafast probes of microelectronic memory devices, non-destructive imaging, ion transport in batteries.
Howard A. Stone

Research interests are in fluid dynamics, widely interpreted, and include a combination of experiment, theory, simulation and modeling. The studies are oriented towards flow problems where viscous effects are significant. The Stone group has active projects involving multiphase flows in microfluidic devices, thin film flows, high-speed imaging of flow phenomena, investigations in bioengineering such as cellular-scale hydrodynamics, formation of biofilms, etc. Many projects occur at the boundaries of traditional disciplines. Stone is also interested in various industrial applications and thinking about ways modern communications and advances in small devices (mechanical, electrical, etc.) can augment and inform traditional engineering disciplines.

Aimy Wissa

The research focus of the Bioinspired Adaptive Morphology (BAM) Lab is bioinspired locomotion. More specifically, we are interested in designing, modeling, and experimentally evaluating mechanisms and robotic systems inspired by solutions found in nature and are designed to resolve state of the art engineering challenges. Our main areas of research include bird-inspired flight, insect-scale dynamics and robots, and multi-modal locomotion strategies. Our work involves wind tunnel experiments, free flight testing under motion capturing systems, and bench-top characterizations.

FACULTY AVAILABLE FOR CONSULTATION:

Barrie S. H. Royce
(Emeritus)

Present research is concerned with the mechanical properties of materials on the nanometer length scale. Of particular interest is study of materials in a biological environment and MEMS structures. Mechanical testing techniques are being developed to look at elastic and plastic properties of nano- or micro-structured materials, their resistance to fatigue environments, and the effects of surface morphology on cell- material interactions.
VIII. WHO TO SEE FOR MORE INFORMATION

Normally, first year students who choose to pursue Engineering in this Department have their course selections for the Sophomore year approved by the Departmental Representative. Sophomore Class Advisors for course selections are: Professor Craig Arnold; Professor Dan Nosenchuck; Professor Michael G. Littman; Professor Luigi Martinelli.

Upperclass students are assigned an academic advisor in the Department according to their area of interest (Aerospace Engineering, Mechanical Engineering, Interdepartmental Certificate Programs). The advisor is available throughout the academic year to 1) discuss and advise students on course selections etc. 2) approve course selection score worksheets and course change forms. Students should feel free to discuss any questions related to their academic program with the Departmental Representative.

Departmental Representative: M.G. Littman D-202A E-Quad.
 Ext. 8-5198 m littman@princeton.edu
 Academic Administrator Theresa Russo D-230, E-Quad
 Ext. 8-7972 tar3@princeton.edu

Engineering Biology:
Professor Michael Littman, D202-A, E-Quad., Ext. 8-5198

Engineering Physics:
Professor Michael Littman, D202-A, E-Quad., Ext. 8-5198

Robotics and Intelligent Systems:
Professor Szymon Rusinkiewicz, COS, Ext. 8-7479, smr@princeton.edu

Sustainable Energy:
Professor Yiguang Ju, D330, E-Quad, Ext. 8-5644
Student Departmental Committee and Other Student Committees:

MAE Undergraduate Student Council/AIAA/ASME: (Current Officers)

Co-Presidents:

AIAA:

ASME:

ASME (American Society of Mechanical Engineers) and AIAA (American Institute of Aeronautics and Astronautics) (Faculty Advisers):

Faculty Advisor AIAA: *Michael Mueller, muellerm@princeton.edu*

Faculty Advisor ASME: *Mikko Haataja, mhaataja@princeton.edu*

SAE and Formula SAE (Society of Automotive Engineering): Princeton Racing Electric

Faculty Advisor: *Luigi Martinelli, gigi@phantom2.princeton.edu*

E-mail: *pre@princeton.edu*

President: *Vivian Chen, ECE ‘25*
Vivianchen@princeton.edu

Rocketry Club:

E-mail: *rockets@princeton.edu*

President:
Interdepartmental Programs (For Current Academic Year):

Program in Applied & Computational Mathematics
Director: Peter Constantin – const@math.princeton.edu
205 Fine Hall, Phone: 8-6303

Program in Applications of Computing
Director: Kevin Wayne – wayne@princeton.edu
040 Corwin Hall, Phone: 8-4455

Program in Engineering Biology
Director: Celeste Nelson – celesten@princeton.edu
303 Hoyt Chemical Laboratory, Phone 8-8851

Program in Engineering and Management Systems
Director: Amir Ali Ahmadi – a_a_a@princeton.edu
Sherrerd Hall 329, Phone: 8-6416

Program in Engineering Physics
Director: Daniel R. Marlow - marlow@princeton.edu
381 Jadwin Hall, Phone 8-4383

Program in Materials Science and Engineering
Director: Alejandro W. Rodriguez – arod@princeton.edu
B318 E-Quad, Phone 8-8962
Program Coordinator: Sandra Lam – sclam@princeton.edu
Bowen Hall 323, Phone: 8-6704

Program in Robotics and Intelligent Systems
Director: Szymon M. Rusinkiewicz smr@princeton.edu
222 Computer Science Building, Phone: 8-7479

Program in Sustainable Energy
Director: Egemen Kolemen ekolemen@princeton.edu
D-302 E-Quad, Phone: 8-9209
Study Abroad and Foreign Exchange:

Engineering is an international enterprise and American companies undertake projects on all continents. In addition, the globalization of enterprises frequently distributes the manufacturing and research activities of a company to several countries. Well-prepared engineers should, therefore, be familiar with the different cultures in which their expertise may be used. The Study Abroad program of the University provides an excellent opportunity to begin this process while obtaining credits from a foreign university that will count towards your degree program. Because the academic year follows different schedules in different countries and hemispheres, you will need to explore the most suitable time to enter such a program. It may be possible to combine a summer program in a country with at least one term of study in your discipline. In this context, some students with advanced standing have used the spring term of the sophomore year followed by summer study whereas others have used the fall term of the junior year. Several foreign universities prefer visiting students to attend for a full academic year as their courses run through the year and the examinations occur at the end of this period.

The Department encourages students who are interested in this educational opportunity to discuss it with their advisor; the Department Undergraduate Representative, Professor Michael G. Littman; Dean Peter Bogucki of the School of Engineering and Applied Science; and Dean Gisella Gisolo, Office of the Dean of the College, Office of International Programs. You may also access the Study Abroad home page https://www.princeton.edu/oip/about/people/. Planning should start as early in the academic process as possible so that your degree program can be designed to accommodate this period of foreign study.

In the past few years, MAE students have studied at the University of Cape Town/South Africa, the University of Auckland/New Zealand, the University of Melbourne/Australia, the University of Sydney/Australia, Indian Institute of Technology/India, the University of Edinburgh/Scotland, University of Manchester/United Kingdom, University of Canterbury/New Zealand, and the University of Cantabria/Spain.

Foreign Exchange:
The School of Engineering and Princeton University have established two Foreign Exchange programs. MAE students have recently participated in the Oxford University Exchange Program in the United Kingdom spending their Junior year abroad. A program has also been established with Ecole Centrale in Paris which may focus on energy studies followed by a summer internship in an energy related industry. A strong background in French is encouraged. There is also a program established with Delft University of Technology in the Netherlands and with Tsinghua University in China.
Study Abroad Contact Information:

Professor Michael G. Littman
D202-A, E-Quad
8-5198,
mlittman@princeton.edu

Dean Peter Bogucki
C205, E-Quad
8-4554
bogucki@princeton.edu

Office of International Programs
Study Abroad
Simpson International Building
8-5524

Study Abroad Homepage:

http://www.princeton.edu/oip/sap/

Study Abroad Meet with an Advisor:

http://www.princeton.edu/oip/about/appointments/
Aerospace Engineering Program

Name:
Year:
Advisor:

HUMANITIES AND SOCIAL SCIENCE REQUIREMENTS (total of 7 required in four distinct areas)

<table>
<thead>
<tr>
<th>Distribution Area</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EC) Epist & Cogn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(EM) Ethic & Moral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SA) Social Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HA) Historical Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LA) Literature & Arts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FL) Foreign Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CD) Culture Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENGINEERING SCHOOL REQUIREMENTS (total of 8 courses required or AP Credit)

<table>
<thead>
<tr>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
<th>Check</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 103</td>
<td></td>
<td></td>
<td>PHY 103 OR 105*</td>
<td></td>
</tr>
<tr>
<td>MAT 104</td>
<td></td>
<td></td>
<td>PHY 104 OR 106*</td>
<td></td>
</tr>
<tr>
<td>MAT 201 OR 203</td>
<td></td>
<td></td>
<td>CHM 201 OR 207* OR MOL 214 (2026 and beyond)</td>
<td></td>
</tr>
<tr>
<td>MAT 202 OR 204</td>
<td></td>
<td></td>
<td>COS 126 or ECE 115*</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENTAL REQUIREMENTS (14 courses required)

<table>
<thead>
<tr>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 221 (Thermo)</td>
<td></td>
<td></td>
<td>MAE 222 (Fluids)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 223 (Solids)</td>
<td></td>
<td></td>
<td>MAE 224 Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 305 (Differential Eq.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

() = Number of Courses Required

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (3)**</td>
<td>MAE 321</td>
<td>MAE 332 or 342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior IW or Thesis or Project</td>
<td>MAE 439 (Fall)</td>
<td>MAE 440 or 442 or 444 (Spring)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>MAE 324 or MSE 301</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamics</td>
<td>MAE 331 or 341</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluids</td>
<td>MAE 335</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propulsion</td>
<td>MAE 426 or 427</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>MAE 433</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td>MAE 323 or CEE 361 or CEE 312</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Requirements:</td>
<td>MAE 321, MAE 331/341 or MAE 332/342, MAE 335, MAE 427/426, MAE 433, Materials,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checklist</td>
<td>MAE 323 or CEE 361 or CEE 312, Sr. IW -or- Sr. Thesis -or- Sr. Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives/Additional Courses (Non-Tech Electives)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing Requirement (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total # of Courses Must Equal 36

*See back page for approved alternate courses – For PHY Extended pathway exists, please refer to SEAS Guidelines

Third Design requirement will be satisfied by either Senior Independent Work, Senior Thesis, or Senior Project
OUTSIDE COURSES (If Applicable)

<table>
<thead>
<tr>
<th>Princeton Equivalent Course #</th>
<th>Name of University</th>
<th>Semester & Year</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Substitutions not requiring Departmental Representative’s Approval:

Math:
- EGR 152 replaces MAT 104
- EGR 154 replaces MAT 202
- EGR 156 replaces MAT 201

Physics:
- PHY 107/108/109 sequence “General Physics” may replace the PHY 103/105 or PHY 105/106 sequence
- EGR 151 replaces PHY 103
- EGR 153 replaces PHY 104

Chemistry:
- CHM 207 Advanced General Chemistry: Materials Chemistry

Note: ISC 231, 232 (Fall) and ISC 233, 234 (Spring) replaces PHY 103/104, CHM 201 and COS 126

All other courses substitutions must be approved *in writing* by the Departmental Representative.

Design Courses:
- MAE 321 Engineering Design
- MAE 322 Mechanical Design
- MAE 332 Aircraft Design
- MAE 342 Space System Design
- MAE 412 Microprocessors for Measurement and Control
- MAE 416 Bioinspired Design
- CEE 477 Engineering Design for Sustainable Development (for students participating in the Sustainable Energy Program)

Updated for AY 21-22
Name:
Year:
Advisor:

HUMANITIES AND SOCIAL SCIENCE REQUIREMENTS
(totals of 7 required in four distinct areas)

<table>
<thead>
<tr>
<th>Distribution Area</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EC) Epist & Cogn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(EM) Ethic & Moral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SA) Social Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HA) Historical Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LA) Literature & Arts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FL) Foreign Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CD) Culture&Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENGINEERING SCHOOL REQUIREMENTS
(totals of 8 courses required or AP Credit)

<table>
<thead>
<tr>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 103</td>
<td></td>
<td></td>
<td>PHY 103 OR 105*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 104</td>
<td></td>
<td></td>
<td>PHY 104 OR 106*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 201 OR 203*</td>
<td></td>
<td></td>
<td>CHM 201 OR 207* OR MOL 214 (2026 and beyond)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 202 OR 204*</td>
<td></td>
<td></td>
<td>COS 126 or ECE 115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENTAL REQUIREMENTS (14 courses required)

<table>
<thead>
<tr>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 221 (Thermo)</td>
<td></td>
<td></td>
<td>MAE 206 (Dynamics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 223 (Solids)</td>
<td></td>
<td></td>
<td>MAE 222 (Fluids)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 305 (Differential Eq)</td>
<td></td>
<td></td>
<td>MAE 224 Lab</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upper Level Departmental Requirements: () = Number of Courses Required

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (3) **</td>
<td>MAE 321</td>
<td>MAE 322 or 412 or 416</td>
<td></td>
</tr>
<tr>
<td>Senior IW or Senior Thesis or Senior Project</td>
<td>MAE 439 (Fall)</td>
<td>MAE 440 or 442 or 444 (Spring)</td>
<td>One semester of independent work is required. More than one suggested.</td>
</tr>
<tr>
<td>Materials</td>
<td>MAE 324 or MSE 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermo-Fluids</td>
<td>MAE 335 or 423 or 438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>MAE 433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td>MAE 323 or CEE 361 or 312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tech Elective</td>
<td>MAE 321, MAE 322/412/416, MAE 335/423/438, Tech Elective, MAE 433, Materials, MAE 335/423/438, Tech Elective, MAE 433, Materials, MAE 323 or CEE 361(MAE325) or CEE312, Sr. IW or Sr. Thesis or Sr. Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Electives/ Additional Courses (Non-Tech Electives)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing Requirement (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total # of Courses Must Equal 36</td>
<td></td>
<td></td>
<td>Certificate Programs</td>
</tr>
</tbody>
</table>

*See back page for approved alternate courses – For PHY Extended pathway exists, please refer to SEAS Guidelines

**Third design requirement will be satisfied by either Senior Independent Work, Senior Thesis, or Senior Project
OUTSIDE COURSES (if Applicable)

<table>
<thead>
<tr>
<th>Princeton Equivalent Course #</th>
<th>Name of University</th>
<th>Semester & Year</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Substitutions not requiring Departmental Representative’s Approval:

Math:
- EGR 152 replaces MAT 104
- EGR 154 replaces MAT 202
- EGR 156 replaces MAT 201

Physics:
- PHY 107/108/109 sequence “General Physics” may replace the PHY103/105 or PHY 105/106 sequence
- EGR 151 replaces PHY 103
- EGR 153 replaces PHY 104

Chemistry:
- CHM 207 Advanced General Chemistry: Materials Chemistry

NOTE: ISC 231, 232 (Fall) and ISC 233, 234 (Spring) replaces PHY 103/104, CHM 201 and COS 126

Suggested Additional Math Course:
- MAE 306 (MAT 392) Mathematics in Engineering II (strongly recommended for those planning graduate work in engineering or applied science)
- ORF 245 Fundamentals of Engineering Statistics
- ORF 307 Optimization
- ORF 309 Probability and Stochastic Systems (MAT 380/ECE 380)
- ORF 363 Computing and Optimization for the Physical and Social Sciences (COS 323)
- COS 302 Mathematics for Numerical Computing and Machine Learning
- COS 240 Reasoning About Computation
- MAT 330 Complex Analysis with Applications
- PHY 403 Mathematical Methods of Physics

All other courses substitutions must be approved in writing by the Departmental Representative.

Design Courses:
- MAE 321 Engineering Design
- MAE 322 Mechanical Design
- MAE 332 Aircraft Design
- MAE 342 Space System Design
- MAE 412 Microprocessors for Measurement and Control
- MAE 416 Bioinspired Design
- CEE 477 Engineering Design for Sustainable Development (pre-approved as Mech Design for those students enrolled in the Sustainable Energy Program)

Technical Electives:
- CBE 341 Mass, Momentum, and Energy Transport (may replace MAE 423 Heat Transfer)
Humanities and Social Science Requirements

<table>
<thead>
<tr>
<th>Distribution Area</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
<th>Course #</th>
<th>Sem/Yr</th>
<th>Ck</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EC) Epist & Cogn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(EM) Ethic & Moral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SA) Social Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HA) Historical Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LA) Literature & Arts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FL) Foreign Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CD) Culture & Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engineering School Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 103</td>
<td></td>
<td></td>
<td>PHY 103 OR 105*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 104</td>
<td></td>
<td></td>
<td>PHY 104 OR 106*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 201 OR 203*</td>
<td></td>
<td></td>
<td>CHM 201 OR 207* OR MOL 214 (2026 and beyond)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 202 OR 204*</td>
<td></td>
<td></td>
<td>COS 126* or ECE 115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Departmental Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Check</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 221 (Thermo)</td>
<td></td>
<td>MAE 206 (Dynamics)</td>
<td>MAE 223 (Solids)</td>
<td></td>
<td>MAE 222 (Fluids)</td>
</tr>
<tr>
<td>MAE 305 (Differential Eq)</td>
<td></td>
<td>MAE 224 Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upper Level Departmental Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Semester/Yr</th>
<th>Course</th>
<th>Semester/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (4)**</td>
<td>MAE 321 (AE/ME)</td>
<td>MAE 332/342 (AE)</td>
<td>MAE 322/412/416 (ME)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior IW -or- Senior Thesis or Senior Project</td>
<td>MAE 439 (Fall)</td>
<td>MAE 440 or 442 or 444 (Spring)</td>
<td>One Semester of independent work is required. More than one suggested.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>MAE 324 or MSE 301 (AE/ME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamics</td>
<td>MAE 331/341 (AE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluids</td>
<td>MAE 335 (AE/ME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propulsion</td>
<td>MAE 427/426 (AE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>MAE 433 (AE/ME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td>MAE 323 or CEE361/312(AE/ME)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Requirements: Checklist</td>
<td>MAE 321, MAE 331/341 or MAE 332/342, MAE 335, MAE 427/426, MAE 433, Materials, MAE 323 or CEE361 or CEE312, Sr. IW or Sr. Thesis or Sr. Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech Requirements: Checklist</td>
<td>MAE 321, MAE 322/412/416, ***MAE 335/423/438, *****TE, MAE 433, Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: See back page for approved alternate courses - For PHY Extended pathway exists, please refer to SEAS Guidelines **Combined program requires a 4th design which will be satisfied with Sr. IW or Sr. Thesis or Sr. Project ***Mech Design requirement met with MAE 335 when completing Mech and Aero Engineering Program ****Aero requirements count as Technical Electives

Total # of Courses Must Equal 36

Free Electives/ Additional Courses (Non-Tech Electives)

Writing Requirement (1)

Certificate Program(s)

47
OUTSIDE COURSES (If Applicable)

<table>
<thead>
<tr>
<th>Princeton Equivalent Course #</th>
<th>Name of University</th>
<th>Semester & Year</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Substitutions not requiring Departmental Representative’s Approval:

Math:
EGR 152 replaces MAT 104
EGR 154 replaces MAT 202
EGR 156 replaces MAT 201

Physics:
EGR 151 replaces PHY 103
EGR 153 replaces PHY 104

Chemistry:
CHM 207 Advanced General Chemistry: Materials Chemistry

NOTE: ISC 231, 232 (Fall) and ISC 233, 234 (Spring) replaces PHY 103/104, CHM 201 and COS 126

Suggested Additional Math Course:
MAE 306 (MAT 392) Mathematics in Engineering II (strongly recommended for those planning graduate work in engineering or applied science)
ORF 245 Fundamentals of Engineering Statistics
ORF 307 Optimization
ORF 309 Probability and Stochastic Systems (MAT 380/ECE 380)
ORF 363 Computing and Optimization for the Physical and Social Sciences (COS 323)
COS 302 Mathematics for numerical Modeling and Machine Learning
COS 240 Reasoning About Computation
MAT 330 Complex Analysis with Applications
PHY 403 Mathematical Methods of Physics

All other courses substitutions must be approved in writing by the Departmental Representative.

Design Courses:
MAE 321 Engineering Design
MAE 322 Mechanical Design
MAE 332 Aircraft Design
MAE 342 Space System Design
MAE 412 Microprocessors for Measurement and Control
MAE 416 Bioinspired Design
CEE 477 Engineering Design for Sustainable Development (pre-approved as Mech Design for those students enrolled in the Sustainable Energy Program)