Ying Liu

G02, E-Quad, Princeton University Princeton, NJ 08544 (917) 873-6908 YL6@PRINCETON.EDU

SUMMARY

I am interested in a broad range of problems related to fluid interfaces. I am currently studying the failure of slippery liquid infused porous surfaces. Also, I am investigating the motion of a bubble in a capillary tube driven by the gradient of surfactant concentration.

EDUCATION

Ph.D., Mechanical and Aerospace Engineering Princeton University, NJ, United States

Expected in June 2019

B.Eng., Mechanics and Aerospace Engineering Peking University, Beijing, China Sep. 2010 - Jul. 2014

RESEARCH EXPERIENCE

 $\label{project:project:} \begin{tabular}{ll} Project: The slip-driven failure of liquid-infused surfaces and superhydrophobic surfaces \end{tabular}$

Supervisor: Prof. Howard A. Stone

Mar. 2015 - Present

- Study experimentally the failure of liquid-infused surfaces under the circumstance where the external fluid is much more viscous the infused fluid.
- Study how the air-filled cavities of superhydrophobic surfaces are filled with water under shear. In each case we systematically vary the flow rate and characterize both transient and steady-state responses.

 $\label{lem:condition} \textit{Undergraduate Thesis Project: A Study of the Impact of a Micro-or Nanoparticle on a Droplet}$

Supervisor: Prof. Huiling Duan

Sep. 2013 - Jun. 2014

- Studied the dependence of impacting response between a solid particle and a water droplet on the sizes of the particle and the droplet, their relative velocity, the wettability of the particle theoretically.
- Designed a experiment and observed the micro- or nano particles are captured by the air-water interface effectively.

Project: Thermodynamic stability of bubbles on hydrophobic surfaces

Supervisor: Prof. Huiling Duan

Aug. 2012 - Sep. 2013

- Built a thermodynamic model to analyze the bubble nucleation mechanism on a superhydrophobic microstructured surface patterned with cylindrical-shaped pillars submersed under water.
- Extended the model onto nucleation on nanostructured surfaces by considering the line tension.

Project: A study of interactions between an air bubble and a solid surface in a liquid Supervisor: Prof. Huiling Duan Sep. 2013 - May 2014

- Constructed the integrated thin film drainage apparatus (ITFDA).
- Studied the interaction between an air bubble and a solid surface under variations of surface roughness, surface temperature, flow rate, etc.

Capstone Design: Spatially gradated segregation and recovery of circulating tumor cells (CTCs) from peripheral blood of cancer patients

Supervisor: Prof. Ray P.S. Han

Sep. 2013 - Jun. 2014

- $\bullet\,$ Designed a Spatially gradated PDMS-based microfluidic chip to capture CTCs.
- Improved the flow rates and reduced the blood clogging by using a surface modification method to yield hydrophilic inner walls of the microfluidic chip.

HONORS AND AWARDS

- $\bullet\,$ 2013: The National Scholarship of China.
- 2013: Merit Student at Peking University.
- 2012: Yihai Kerry Scholarship at Peking University.
- 2012: Model Student of Academic Records at Peking University.

TECHNOLOGY SKILLS

TECHNOLOGY Experimental Skills: Microfluidics, Confocal microscopy.

Computer Competency: Programming experience in C and C++, plus extensive

knowledge of softwares, including MATLAB, Origin and Mathematica.

PROFESSIONAL AFFILIATIONS

• Member of APS (American Physical Society).