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Dynamic Mode Decomposition
Dynamic mode decomposition is a data-driven reduced order modeling technique commonly used
for fluids applications, where the system’s state x(t) is broken down into modes with time-varying
coefficients,

x(t) =

N∑
j=1

cje
λjtvj ,

where we notice the time-varying coefficients must take the form of exponential functions, leading
to simple physical interpretation – modes vj are growing, shrinking, and oscillating in time ac-
cording to their corresponding values of λj . In extended dynamic mode decomposition (EDMD),
“observable” functions are applied to the data x(t) before DMD is performed, which allows us to
model a wider range of system behavior. In the DMD algorithm, a “DMD matrix” A is identified
whose eigenvalues are λj and whose corresponding right eigenvectors are vj .

EDMD is related to a linear, infinite dimensional operator called the Koopman operator. For a
system with dynamics x(k + 1) = F (x(k)), the Koopman operator U acts on scalar functions g of
the state space such that Ug(x) = g(F (x)). It has been shown that, with some constraints on the
observables chosen, eigenvalues of the DMD matrix A resulting from EDMD are eigenvalues of the
Koopman operator U , and the corresponding left eigenvectors of A correspond with the associated
eigenfunction of the Koopman operator [1].

Based on this connection between EDMD and the Koopman operator, a metric has been pro-
posed for evaluating the fidelity of EDMD results, without assuming access to the analytical “true”
eigendata [2].

Applications to Complex Systems
EDMD has been successfully applied to systems with simple dynamics such as fixed points or limit
cycles. For example, it has been applied to flow past a circular cylinder as it transitions to a limit
cycle of vortex shedding [3]. However, EDMD has not been validated for use on more complicated
systems like turbulent flow. To that end, my work so far has been in applying EDMD to model
systems with some of the same complex features as turbulence, namely ergodicity, mixing, and
chaos.

We have found that for ergodic systems with pure point spectrum, EDMD (with reasonable
choices for observables) correctly identifies the Koopman eigenvalues and eigenfunctions associated
with the transformation, and the recently proposed error metric (with no access to analytical re-
sults) correctly indicates their validity. For mixing systems, which have only continuous spectrum,
EDMD does not correctly identify the spectrum, and the error metric correctly indicates that they
are useless. For systems with a “structured” component such as point spectrum and a “random”
component such as continuous spectrum, EDMD can still correctly identify the point spectrum,
and with the proposed error metric we can distinguish the “structured” and “random” components
from each other.

Future work in this area will bring us closer to understanding how EDMD applies to turbulent
systems. Some theoretical results to back up the findings on model systems will be found, and
systems of increased complexity will be studied.
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Turbulent Separation Bubbles
Separation bubbles, where the boundary layer detaches from a wall and reattaches downstream,
are present in a variety of applications from airfoils at high angle of attack to corners, and often in
cases of turbulent flow. They can arise from geometric discontinuities like a backward-facing step
or from adverse pressure gradients. These turbulent separation bubbles have long been studied
experimentally [4][5] and simulated numerically [6]. However, an observed low-frequency oscillation
mode (Strouhal number approximately 0.01), typically called the “breathing” mode, has defied
explanation, with numerous proposed causal mechanisms never quite matching all the data nor
being conclusively proven [5][7][8].

In a planned collaboration between Cattafesta, Mittal, Meneveau, and Rowley, researchers at
Florida State University will perform experiments involving a turbulent separation bubble induced
by an adverse pressure gradient. Unlike previous experiments, this will include perturbations to
the flow so that hopefully the causes, dynamics, and scaling relationships can be determined. Sim-
ulations will be performed at Johns Hopkins University as well. EDMD will be used at Princeton
to help interpret the results.

Using EDMD, relevant features of the observed flow can be extracted, such as modes that
oscillate at relevant frequencies. The physical structure of these modes should provide clues about
the causes of oscillations. Also, producing a phenomenologically accurate reduced order model of
turbulent separation bubble behavior could be useful for future control efforts. Extending EDMD
to accurately capture mixing could apply here and in many other turbulent systems.
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