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Linear control theory is a well established �eld that provides us with a vari-
ety of tools for analyzing linear dynamical systems. Convenient methods exist
for checking stability and controllability of linear systems, formulating control
laws, and determining e�ects of model uncertainties and external disturbances.
Moreover, the linear theory can be used in conjunction with Model Reduction
techniques (such Proper Orthogonal Decomposition) for controlling systems of
large dimensionality such as non-steady �ow �elds in �uids[1].

Non-linear dynamical systems can sometimes be linearized about �xed point
and trajectories. However, resulting linearized systems are inaccurate away from
their nominal trajectories and cannot capture some intrinsically non-linear phe-
nomena. In particular, limit cycles do not appear in a linear systems although
they are common in many physical setups such as low Reynolds �ows[2]. Un-
fortunately, the tools for studying general nonlinear systems are very limited
compared to the linear control theory.

We are therefore motivated to �nd a change of coordinates that transforms
non-linear systems into equivalent linear systems. In the case of autonomous
systems (i.e. without control input), we have shown that such coordinates are
related to the Koopman operator. To be precise, the �desired� coordinates are
linear combinations of Koopman eigenfunctions which, by their de�nition, evolve
linearly in time.

Koopman eigenfunctions can be numerically approximated from given tra-
jectories of the system via data driven approaches such as Extended Dynamic
Mode Decomposition (EDMD)[3], and from the Taylor expansion of system dy-
namics around �xed points[4]. The later approach, happens do be related to
the Normal form of the system and its Carleman linearization. In particular,
we have shown that analytic Koopman eigenfunctions exist if and only if the
Normal form of the system has no non-linear terms.

While the autonomous evolution of Koopman eigenfunctions is always linear,
the situation for non-linear systems with input in more subtle. Considering a
general n dimensional system, we have formulated n−1 necessary conditions on
the input terms, for the system to appear linear in �Koopman Coordinates�. The
large amount of constraints suggests that one should not expect to �nd a trans-
formation to bring an arbitrary non-linear system into a linear form. Instead,
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we will limit our focus to speci�c non-linear systems and their approximations.
In future work, we will treat systems of special forms, e.g. cases in which the

system is linear in Koopman coordinates, or choose to satisfy the constraints
partially, e.g. by choosing to control only the �slow� modes when appropriate.
We will also consider the physical meaning of Koopman eigenfunctions in speci�c
applications such as reduced order models of low Reynolds �ows, and in partic-
ular address the question: How do linear control terms in Koopman coordinates
appear in the original system? Additionally, we will augment model reduction
and Koopman related algorithms with control terms to allow us to study the
e�ects of feedback on Koopman eigenfunctions from a numerical perspective.
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