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Abstract I describe the basic components of the nervous system—neurons and their
connections via chemical synapses and electrical gap junctions—and review the
model for the action potential produced by a single neuron, proposed by Hodgkin and
Huxley (HH) over 60 years ago. I then review simplifications of the HH model and
extensions that address bursting behavior typical of motoneurons, and describe some
models of neural circuits found in pattern generators for locomotion. Such circuits
can be studied and modeled in relative isolation from the central nervous system and
brain, but the brain itself (and especially the human cortex) presents a much greater
challenge due to the huge numbers of neurons and synapses involved. Nonetheless,
simple stochastic accumulator models can reproduce both behavioral and electro-
physiological data and offer explanations for human behavior in perceptual decisions.
In the second part of the paper I introduce these models and describe their relation to
an optimal strategy for identifying a signal obscured by noise, thus providing a norm
against which behavior can be assessed and suggesting reasons for suboptimal per-
formance. Accumulators describe average activities in brain areas associated with the
stimuli and response modes used in the experiments, and they can be derived, albeit
non-rigorously, from simplified HH models of excitatory and inhibitory neural pop-
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ulations. Finally, I note topics excluded due to space constraints and identify some
open problems.
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1 Introduction

Neuroscience is currently generating much excitement and some hyperbole (a re-
cent review of a popular book referred to “neuromania” (McGinn 2013)). This is
largely due to recent advances in experimental techniques and associated meth-
ods for analysis of “big data.” Striking examples are the CLARITY method
that allows imaging of entire neural circuits and captures subcellular structural
detail (Chung et al. 2013), and Connectomics (Seung 2012), which aims to deter-
mine neural connectivity and hence function at the cellular level. In announcing the
US Brain Initiative in April 2013, President Obama spoke of “giving scientists the
tools they need to get a dynamic picture of the brain in action and better under-
stand how we think and how we learn and how we remember” (Insel et al. 2013).
Such tools are not solely experimental (Abbott 2008). Computational approaches
already play a substantial rôle in neuroscience (De Schutter 2008, 2009), and they
are becoming more ambitious: the European Blue Brain project (Markram 2006)
(http://bluebrain.epfl.ch/) proposes to simulate all the cells and most of the synapses
in an entire brain, thereby hoping to “challenge the foundations of our understanding
of intelligence and generate new theories of consciousness.”

In this article I have a more modest goal: to show how mathematical models and
their analyses are contributing to our understanding of some small parts of brains
and central nervous systems. I will describe how reductions of biophysically based
models of single cells and circuits to low-dimensional dynamical systems can re-
veal mechanisms that might otherwise remain hidden in massive data analyses and
computer simulations. In this regard mathematics does not merely enable numerical
simulation and motivate experiments, it provides an analytical complement without
which they can lose direction and lack explanatory power.

Mathematical treatments of the nervous system began in the mid 20th century.
An early example is Norbert Wiener’s “Cybernetics,” published in 1948 and based
on work with the Mexican physiologist Arturo Rosenblueth (Wiener 1948). Weiner
introduced ideas from dissipative dynamical systems, symmetry groups, statistical
mechanics, time series analysis, information theory, and feedback control. He also
discussed the relationship between digital computers (then in their infancy) and neu-
ral circuits, a theme that John von Neumann subsequently addressed in a book pub-
lished in the year following his death (von Neumann 1958). While developing one
of the first programmable digital computers (JONIAC, built at the Institute for Ad-
vanced Study in Princeton in the late 1940s), von Neumann “tried to imitate some
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of the known operations of the live brain” (von Neumann 1958, Preface). In devel-
oping cybernetics, Wiener drew on von Neumann’s earlier works in analysis, ergodic
theory, computation and game theory, as well his own studies of Brownian motion
(a.k.a. Wiener processes). Some of these ideas appear in Sect. 4 of the present paper.

These books (Wiener 1948; von Neumann 1958) were directed at the brain and
nervous system in toto, although much of the former was based on detailed studies
of heart and leg muscles in animals. The first cellular-level mathematical model of a
single neuron was developed in the early 1950s by the British physiologists Hodgkin
and Huxley (1952d). This work, which won them the Nobel Prize in Physiology in
1963, grew out of a long series of experiments on the giant axon of the squid Loligo
by themselves and others, as noted in Sect. 2 (also see Huxley’s obituary (Mackey and
Santillán 2013)). Since their pioneering work, mathematical neuroscience has grown
into a subdiscipline, served worldwide by courses long and short (e.g. Kopell et al.
2009, Whittington et al. 2009), textbooks (e.g. Wilson 1999, Dayan and Abbott 2001,
Keener and Sneyd 2009, Ermentrout and Terman 2010, Gabbiani and Cox 2010), and
review articles (recent examples include Wang 2010, Kopell et al. 2010, McCarthy
et al. 2012, Deco et al. 2013). The number of mathematical models must now exceed
the catalogue of brain areas by several orders of magnitude. I can present but few
examples here, inevitably biased toward my own interests.

Models can be of two broad types: empirical (also called descriptive or phe-
nomenological), or mechanistic. The former ignore (possibly unknown) anatomical
structure and physiology, and seek to reproduce input–output or stimulus–response
relationships of the system under study. Mechanistic models attempt to describe
structure and function in some detail, reproducing observed behaviors by appropri-
ate choice of model components and parameters and thereby revealing mechanisms
responsible for those behaviors. Models can reside throughout a continuum from
molecular to organismal scales, and many are not easily classifiable, but one common
feature is nonlinearity. Unlike much of physical science and engineering, biology is
inherently nonlinear. For example, the functions describing ion channels opening in
cells in response to transmembrane voltage increase or characterizing neural firing
rate dependence on input current are typically bounded above and below, and often
modeled by sigmoids.

The first part of this article covers mechanistic models, beginning in Sect. 2 with
the Hodgkin–Huxley (HH) equations for the generation and propagation of a single
action potential (AP, or spike); it then discusses dimensional reductions that are easier
to analyze and extensions of HH to describe neurons that emit bursts of spikes, and
introduces models for synapses. Section 3 considers small neural circuits found in
central pattern generators for locomotion, and shows how HH models of them can be
simplified to phase oscillators. While mathematical methods such as averaging and
dimensional reduction via time scale separation are used to simplify coupled sets of
HH equations in these cases, the models are all based on cellular biophysiology.

In Sect. 4 I change scale to introduce empirical models of activity in brain areas
that may contain millions of neurons. Focusing on simple binary decisions in which a
noisy stimulus must be identified, I show how a pair of competing nonlinear stochas-
tic accumulators can model the integration of noisy evidence toward a threshold, trig-
gering a response. Linearizing and considering a limiting case, this model reduces to
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a scalar drift-diffusion (DD) process, which is in turn a continuum limit of the se-
quential probability ratio test (SPRT). The SPRT is known to be optimal in that it
renders decisions of specified accuracy in the shortest possible time. The tractability
of the DD process allows one to derive an explicit optimal speed-accuracy tradeoff,
against which human and animal behavior can be assessed. Behavioral experiments
reveal both approximations to and deviations from optimality, and further analyses of
the model and data suggest three potential reasons for the latter: avoidance of errors,
poor time estimation, and minimization of the cost of cognitive control.

Section 5 sketches computations based on mean-field theory which start with pools
of spiking neurons having distinct “tuning curves” that respond differently to the two
stimuli and lead to stochastic accumulator models like those of Sect. 4. While this
is neither rigorous nor as complete as the reduction methods of Sect. 3, it provides
further support for such models by connecting them to simplified neuron models of
HH type. It also suggests a fourth, physiological reason for suboptimality, namely,
nonlinear dynamics. Section 6 contains a brief discussion, provides references some
of the many topics omitted due to space limitations, and notes some open problems.

2 The Components: Neurons, Synapses and the Hodgkin–Huxley Equations

The basic components of the nervous system are neurons: electrically active cells
that can generate and propagate signals over distance. These signals are action po-
tentials (APs, or spikes): voltage fluctuations of O(100) mV, each lasting 1–5 msec,
across the cell membrane. Structurally, neurons come in many shapes and sizes, but
all share the basic features of a soma or cell body, dendrites: multiply branching
extensions that receive signals from other neurons, and an axon, a cable-like exten-
sion that may also be branched, along which APs propagate to other neurons.1 The
connections between axons and dendrites are called synapses, and they may be elec-
trical, communicating voltage differences, or chemical, releasing neurotransmitters
upon the arrival of an AP from the presynaptic cell. Functionally, neurons are either
excitatory or inhibitory, tending to increase or depress the transmembrane voltage
of postsynaptic cells to which they connect. In this section we describe models for
single neurons and for synapses.

2.1 The Hodgkin–Huxley Equations

As noted above, following years of beautiful and painstaking experiments reported
in an impressive series of papers (Hodgkin et al. 1949, 1952; Hodgkin and Hux-
ley 1952b,a,c), Hodgkin and Huxley created the first mathematical model for the
AP (Hodgkin and Huxley 1952d). This work gained them a Nobel prize in 1963,
along with J.C. Eccles (for work on synapses and discovery of excitatory and in-
hibitory postsynaptic potentials: see Sect. 2.5). They used the giant axon of a squid,
part of the animal’s escape reflex system. The cell’s size allowed them to thread a
silver wire through it, equalizing voltages along the axon, thus removing spatial vari-
ations and allowing them to describe its dynamics in terms of nonlinear ordinary

1Biologists refer to dendrites and axons as processes: confusing terminology for a mathematician!
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Fig. 1 Equivalent circuit for the
giant axon of squid,
from Hodgkin and Huxley
(1952d, Fig. 1). Leak
conductance is constant, but
sodium and potassium
conductances vary, indicated by
variable resistors. Batteries
represent reversal potentials,
transmembrane capacitance is
Cm µF/cm2 and applied current
is I µA/cm2

differential equations (ODEs):

Cm

dv

dt
= −ḡKn4(v − vK) − ḡNam

3h(v − vNa) − ḡL(v − vL) + I, (1a)

dm

dt
= αm(v)(1 − m) − βm(v)m, (1b)

dn

dt
= αn(v)(1 − n) − βn(v)n, (1c)

dh

dt
= αh(v)(1 − h) − βh(v)h. (1d)

(A term ∂2v

∂x2 was subsequently added to (1a) to model propagation of the AP along
the axon (Hodgkin and Huxley 1952d), creating a reaction–diffusion equation.) I now
briefly describe the electro-chemical mechanisms encoded in the ODEs (1a–1d);
for further details and historical notes, see Keener and Sneyd (2009, Sect. 5.1),
and Hodgkin and Huxley (1952d).

Before starting it is important to know that ionic transport across cell membranes
occurs through ion-specific channels and pores. It is driven passively by concentra-
tion and potential differences and by active pumps that exchange sodium for potas-
sium and remove calcium from the cell. The Nernst–Planck equation, from bio-
physics, relates transmembrane flux, concentration and potential differences for each
ionic species, and allows one to compute equilibrium conditions consistent with zero
flux (Keener and Sneyd 2009, Sect. 2.6). At this resting potential, sodium concen-
trations are higher outside the cell than inside, while potassium concentrations are
higher inside it.

Hodgkin and Huxley had noted that during a spike the initial inward current was
followed by an outward current. They hypothesized that the former was due to sodium
ions (Na+) flowing in from their higher extracellular concentration, and that the out-
ward current was due to potassium ions (K+) leaving the cell. They also included a
passive leak current, due primarily to chloride ions (Cl−). These three currents ap-
pear in (1a) as ḡNam

3h(v−vNa), ḡKn4(v−vK), and ḡL(v−vL) µA/cm2 respectively,
along with an externally applied current I , corresponding to Kirchhoff’s law which
describes the rate of change of transmembrane voltage v in the circuit of Fig. 1. The
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barred parameters in the sodium and potassium conductances denote constant values
that multiply time-dependent functions of n(t),m(t) and h(t) to form “dynamical”
conductances ḡKn4 and ḡNam

3h. Voltage dependencies of the ion channels are also
characterized by the Nernst reversal potentials vK = −12 mV, vNa = 115 mV and
vL = 10.6 mV; as the name suggests, the currents change direction as v crosses these
values.

The rôle of each ionic species was revealed by experiments in which all but one
active species were removed and the transmembrane voltage held constant and then
stepped from one value to another, while the current I (t) required to maintain that
voltage was recorded. This voltage clamp method determined each ionic conduc-
tance as a function of voltage. Moreover, by examining transient responses following
steps of given sizes, Hodgkin and Huxley could fit sigmoids to the six functions
αm(v), . . . βh(v) across the relevant voltage range. (Note that (1b–1d) are linear for
fixed v.) They postulated a single gating variable n(t) ∈ [0,1] to describe potassium
activation and noted that while conductance dropped sharply from higher levels fol-
lowing a downward step in v, it rose gently from zero after a step increase. This led
to the fourth power in the potassium conductance ḡKn4 (cf. Hodgkin and Huxley
1952d, Figs. 2 and 3). Sodium dynamics proved more complicated, involving a rapid
increase in conductance followed by slower decrease (Hodgkin and Huxley 1952d,
Fig. 6), a non-monotonic response that required two variables m(t), h(t) ∈ [0,1] to
describe activation and deactivation, producing the m3h term in ḡNam

3h.
The resulting forms of the α and β functions are

αm(v) = 0.1
25 − v

exp( 25−v
10 ) − 1

, βm(v) = 4 exp

(−v

18

)
, (2)

αh(v) = 0.07 exp

(−v

20

)
, βh(v) = 1

exp( 30−v
10 ) + 1

, (3)

αn(v) = 0.01
10 − v

exp( 10−v
10 ) − 1

, βn(v) = 0.125 exp

(−v

80

)
, (4)

and the conductances are ḡNa = 120, ḡK = 36, and ḡL = 0.3 mSiemens/cm2. To
emphasize the equilibrium potential n∞(v) at which n remains constant, and the time
scale τn(v), the gating equations may be rewritten as follows:

dn

dt
= n∞(v) − n

τn(v)
, where

n∞(v) = αn(v)

αn(v) + βn(v)
, τn(v) = 1

αn(v) + βn(v)
, (5)

with analogous expressions for m and h. See Hodgkin and Huxley (1952d, Figs. 4–5,
7–8 and 9–10) for graphs of αn(v),βn(v), n∞(v), etc.

Figure 2 shows time courses of voltage and gating variables during a typical AP,
obtained by numerical solution of (1a)–(1d). Note the four phases:

(1) rapid increase in v and m as sodium conductance rises towards the sodium Nernst
potential in a brief depolarized AP.
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Fig. 2 (a) Time courses of
membrane voltage (a) and
gating variables (b) during an
action potential and the
subsequent refractory and
recovery periods: m solid,
n dash-dotted and h dashed.
Voltage scale has been shifted so
that resting potential is at 0 mV.
Note the differing timescales
and approximate anticorrelation
of n(t) and h(t)

(2) At higher voltages h decreases, lowering sodium conductance, and n increases,
increasing potassium conductance and driving v down towards the potassium
potential.

(3) During the ensuing refractory period m falls quickly to its resting value, but n

stays high and h remains low because their equations have longer time constants,
thus holding v down (hyperpolarized) and preventing APs.

(4) As n and h return to values that allow an AP, the cell enters its recovery phase.

The variables m,n and h can be interpreted as probabilities that gates in the cor-
responding ionic channels are open, and the exponents in the conductances as the
numbers of gates that must be open. It is now known that potassium channels con-
tain tetrameric structures that must cooperate for ions to flow, in agreement with the
empirical n4 fit.
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Fig. 3 Phase planes of the
reduced HH equations
(7a)–(7b), showing nullclines
v̇ = 0, ṅ = 0 (bold) for I = 0 (a)
and I = 15 (b). Orbits flow to
the left above v̇ = 0 and to the
right below it; diamonds at ends
of orbit segments indicate flow
direction. Approximately
horizontal components
correspond to fast flows and
solutions move slowly near the
slow manifold v̇ = 0

2.2 Two-Dimensional Reductions of HH

I now introduce two simplifications of the Hodgkin–Huxley equations, a reduction
of HH due to Krinsky and Kokoz (1973) and, independently, Rinzel (1985), and the
FitzHugh-Nagumo (FN) equations (FitzHugh 1961; Nagumo et al. 1962), (Wilson
1999, Chaps. 8–9). Examining the behavior of the HH state variables, we see that
m(t) changes relatively rapidly because its timescale τm = 1/(αm + βm) � τn, τh in
the relevant voltage range (cf. (2–5) and Fig. 2). We may therefore assume that it is
almost always equilibrated so that ṁ ≈ 0, implying that

m(t) ≈ m∞(v) = αm(v)

αm(v) + βm(v)
, (6)

cf. (5). Moreover, as Fig. 2(b) shows, n(t) and h(t) are approximately anti-correlated
in that throughout the AP and recovery phase their sum remains almost constant:
h + n ≈ a. Thus m and h may be replaced by m∞(v) and a − n and dropped as state
variables, reducing the system to

Cm

dv

dt
= −ḡKn4(v − vK) − ḡNam∞(v)3(a − n)(v − vNa) − ḡL(v − vL) + I, (7a)

τn(v)
dn

dt
= n∞(v) − v. (7b)

This reduction to a planar system can be made rigorous by use of geometric singular
perturbation methods (Jones 1994).

Planar system methods (Hirsch et al. 2004) reveal the phase portrait of (7a)–(7b).
The ṅ = 0 nullcline, on which solutions move vertically in Fig. 3, can be written
explicitly, but the v̇ = 0 nullcline, for horizontal motion, demands solution of a quar-
tic polynomial, which can be done numerically to yield the phase portrait of Fig. 3.
Fixed points lie at the intersections of these nullclines. The left-hand plot, for I = 0,
features a sink near v = 0 along with a saddle and a source. In the right-hand plot,
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Fig. 4 Phase planes of the
FizHugh–Nagumo equations
(8a)–(8b), showing nullclines
and indicating fast and slow
flows for τv = 0.1, τr = 1.25,
and I = 0 (left) and I = 1.5
(right). At left, all orbits
approach a sink; at right a limit
cycle encircles a source. Orbits
shown as in Fig. 3

for I = 15, a limit cycle has appeared. Figure 3 displays the spiking threshold vth
at a local minimum of the v̇ = 0 nullcline. When the leftmost fixed point lies to the
left of vth it is stable, as for I = 0. In this excitable state spikes can occur due to
perturbations that push v past vth, but absent further perturbations the state returns
to the sink. When the fixed point moves to the right of vth (I = 15) it loses stability
and solutions repeatedly cross threshold, yielding periodic spiking in the manner of
a relaxation oscillator (Guckenheimer and Holmes 1983, Sect. 2.1).

Here, to illustrate the rich dynamics that a planar system with nonlinear nullclines
can exhibit, we have chosen I values for which (7a)–(7b) has three fixed points; for
others, it has only one (as do the original H–H equations) (Rinzel 1985).

The FN equations preserve this qualitative structure, replacing the complicated
sigmoids of (2–4) by cubic and linear functions:

v̇ = 1

τv

(
v − v3

3
− r + I

)
, (8a)

ṙ = 1

τr

(−r + 1.25v + 1.5), (8b)

Wilson (1999, Sect. 8.3). Timescales are normally chosen so that τv � τr = O(1) to
preserve the relaxation oscillation with fast rise and fall in v, but the relative durations
of the depolarized and hyperpolarized episodes are approximately equal, unlike the
HH dynamics of Fig. 2. The reason for this becomes clear when we examine the
nullclines shown in Fig. 4.

First note that the basic behavior of the reduced HH equations (7a)–(7b) is pre-
served: for low I (on the left), there is a stable sink, while for higher I (on the right),
there is a stable limit cycle. However, unlike Fig. 3, the cubic v̇ = 0 nullcline is sym-
metric about v = 0, so that the slow orbit segments are similar in duration. Moreover,
since the slope of the ṙ = 0 nullcline (1.25) exceeds the maximum slope of the v̇ = 0
nullcline (1), (8a)–(8b) has a single fixed point for all I . It can be shown that this
loses stability in a supercritical Hopf bifurcation (Guckenheimer and Holmes 1983,
Sect. 3.4) as I increases, creating the limit cycle, and that the limit cycle vanishes in a
second Hopf bifurcation at a higher I , where the fixed point restabilizes, correspond-
ing to persistent depolarization of the neuron. This bifurcation sequence also occurs
for the full HH equations, but in that case the first Hopf bifurcation is subcritical, in
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Fig. 5 Periodic spiking in a
leaky IF model for vss > vth,
including a refractory period.
Trajectory of v(t) without
threshold shown dashed and
marked vss (in red)
(Color figure online)

which an unstable limit cycle converges on the stable hyperpolarized fixed point. The
unstable cycle appears in a saddle-node bifurcation of periodic orbits (Guckenheimer
and Holmes 1983, Sect. 3.5), along with a stable limit cycle at a slightly lower I . The
FN simplification loses both quantitative and fine qualitative detail, but is nonetheless
popular among applied mathematicians due to its analytical tractability.

2.3 Integrate-and-Fire Models

Integrate-and-fire (IF) models effect further reduction to a single ODE by replac-
ing the spike dynamics with a stereotypic AP description inserted when v exceeds
a threshold vth, followed by reset to a resting potential vr , possibly after a fixed re-
fractory period. The model was first introduced in 1907 in studying the sciatic nerve
of leg muscles in frogs (Lapicque 1907; Brunel and van Rossum 2007), but further
studies came decades later (Stein 1965; Knight 1972a,b). The linear IF model retains
only the leak and applied currents of (1a) and is written

Cv̇ = −ḡL(v − vL) + I, for v ∈ [vr , vth). (9)

A delta function δ(t − tk) is inserted and voltage reset if v reaches vth at t = tk ,
making (9) a hybrid dynamical system (Back et al. 1993; Guckenheimer and Johnson
1995). Without resets, all solutions would approach the sink at vss = vL + I/ḡL as
they do for vss ≤ vth, but if vss > vth repetitive spiking occurs as shown in Fig. 5.

The decelerating subthreshold voltage profile of the linear IF model differs from
the acceleration characteristic of more realistic models (cf. Fig. 2(a)). This can be
repaired by using nonlinear functions, common choices being quadratic (Ermen-
trout and Kopell 1986; Latham et al. 2000; Latham and Brunel 2003) or exponen-
tial (Foucaud-Trocme et al. 2003; Foucaud-Trocme and Brunel 2005). The reset upon
reaching threshold prevents orbits escaping to infinity in finite time. See Izhikevich
(2004) for comparisons and Burkitt (2006a,b) for model reviews.

Interspike intervals and hence firing rates are easily computed for scalar IF models,
but it is difficult to obtain explicit results for all but the simplest multi-unit circuits
because one must compute threshold arrival times for every cell and paste together
the intervening orbit segments to obtain the flow map. Nonetheless, IF models are
in wide use for large-scale numerical simulations of cortical circuits; an example
appears below in Sect. 5.
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Fig. 6 Left: A branch of
equilibria (red) for the “frozen
c” system containing two
saddle-nodes (SN) and a Hopf
bifurcation (H). The v̇ = 0 and
ċ = 0 nullclines and a typical
bursting orbit are projected onto
the (c, v) plane. Right: The
voltage time history exhibiting
periodic bursts. Adapted
from Ghigliazza and Holmes
(2004b, Fig. 11)
(Color figure online)

2.4 A Model for Bursting Neurons

As well as reducing them, one can augment the HH equations by adding ionic species.
Incorporating slow processes such as calcium (Ca++) release introduces long time
scales that can interact with the medium and short timescales of periodic APs to
produce bursts of spikes followed by refractory periods. This is characteristic of mo-
toneurons, and more generally of cells involved in generating rhythmic activity (Chay
and Keizer 1983; Sherman et al. 1988). Let c(t) denote a slow gating variable gov-
erned by

τc(v)ċ = ε
(
c∞(v) − c

)
, ε � 1, (10)

and for simplicity suppose that the medium scale ionic dynamics has been reduced
to a single variable n, as in (7a)–(7b). The voltage equation analogous to (7a) now
contains an ionic current depending on c, but since ċ = O(ε), we may appeal to per-
turbation methods (Holmes 2013) and regard c as a “frozen” parameter. Changes in
c can cause bifurcations in the two-dimensional (v,n) system that lead from quies-
cence (a stable fixed point), to periodic spiking, as in Fig. 3, and the slow dynamics
of (10) can drive the full system periodically between these states.

Figure 6 shows an example from Ghigliazza and Holmes (2004b). For small c

the (v,n) system has a source surrounded by a stable limit cycle, and for high c

a single sink, which continues to the lower saddle-node bifurcation point. The up-
per saddle node creates the source and a saddle point. Below the ċ = 0 nullcline,
c decreases, moving the state along the lower, stable branch of equilibria during
the refractory period. At the lower saddle node, the state jumps to the limit cycle,
which lies above ċ = 0, so that c now increases. However, before reaching the upper
saddle-node the limit cycle collides with the saddle and vanishes in a homoclinic loop
bifurcation (Guckenheimer and Holmes 1983, Sect. 6.1).

More on bursting mechanisms and their classification via the fast subsystem’s bi-
furcations as the slow c variable drifts back and forth can be found in Wilson (1999,
Chap. 10) and Keener and Sneyd (2009, Chap. 9).
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2.5 Neural Connectivity: Synapses and Gap Junctions

Synapses are structures that allow communication of signals between neurons. They
come in two types, electrical and chemical. The former provide fast, bidirectional
communication via direct contact of cytoplasm in distinct cells through gap junc-
tions, small protein structures where the cells make close contact. They are generally
modeled as linear resistors, so that the voltage equations for cells i and j become

Civ̇i = −Ii,ion(. . .) + Ii + ḡgap(vj − vi), (11a)

Cj v̇j = −Ij,ion(. . .) + Ij + ḡgap(vi − vj ), (11b)

where ḡgap is the gap-junction conductance and Ii,ion(. . .) denotes the internal ionic
currents of cell i. Electrical synapses appear in escape reflexes: e.g., the tail-flip giant
neuron in goldfish connects to sensors via a gap junction, allowing rapid responses
to threatening stimuli. Gap junctions can also connect groups of small cells, causing
them to spike together, as in the synchronization of ink release in certain marine
snails.

Chemical synapses involve the release of neurotransmitter from a presynaptic neu-
ron and its reception at a postsynaptic neuron. The cells are separated by synaptic
clefts between boutons, protrusions on the presynaptic axon that contain vesicles of
neurotransmitter molecules, and postsynaptic dendritic spines. After an AP arrives,
calcium influx causes vesicles to fuse with the cell membrane and release their con-
tents, which diffuse across the synaptic cleft to reach postsynaptic receptors that open
ion channels and generate excitatory or inhibitory postsynaptic potentials (EPSPs, IP-
SPs). A single EPSP is usually too small to drive a hyperpolarized postsynaptic cell
across threshold, but multiple EPSPs can evoke a spike. IPSPs drive its voltage down
to delay or prevent spiking.

The amino acids acetylcholine (ACh), glutamate and γ -aminobutyric acid (GABA)
are major neurotransmitters, as are the monoamines dopamine (DA), norepinephrine
(NE) and serotinin (SE). Their effects are determined by ionotropic and metabotropic
receptors; the former open channels quickly, the latter act via a slower cascade of
messengers. GABA activates both ionotropic and metabotropic inhibitory receptors
and 2-amino-3-hydroxy-5-methyl-isoxazolepropanoic acid (AMPA) and N-methyl-
D-aspartic acid (NMDA) are excitatory ionotropic receptor types for glutamate, with
AMPA exhibiting significantly faster activation and deactivation than NMDA.

Chemical synapses are considerably slower than gap junctions, but allow more
complicated behavior. They exhibit synaptic plasticity which is crucial to learn-
ing, since it allows connections among cells (and hence brain areas) to weaken or
strengthen in response to experience. They can amplify signals by releasing large
numbers of neurotransmitter molecules, which open many ion channels and thereby
depolarize a much larger cell than is possible with gap junctions. Neurotransmit-
ter and receptor time constants span two orders of magnitude and their interaction
can lead to reverberations that sustain neural activity in working memory: see Wang
(1999, 2010), Wong and Wang (2006) and Sect. 5 below.

The effects of neurotransmitter arrival can be modeled as a current that depends
on the probability, Ps , of postsynaptic ion channels being open. This process, and the
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closure of channels as the transmitter unbinds from receptors, can be modeled like
the gating variables in the HH equations:

dPs

dt
= αs(1 − Ps) − βsPs, (12)

where αs and βs determine the rates at which channels open and close, effectively en-
coding the neurotransmitter time scales: see Destexhe et al. (1999, p. 15) and Dayan
and Abbott (2001, p. 180). Opening is typically faster than closure, so αs � βs, and
βs is often assumed constant, but αs depends on neurotransmitter concentration in the
synaptic cleft, and thus on the presynaptic voltage vi . Again, a sigmoid provides an
acceptable model:

αs(vi) = ᾱsCNT,max

1 + exp[−kpre(vi − v
pre
syn)]

, (13)

(Destexhe et al. 1999; Dayan and Abbott 2001), where CNT,max represents the max-
imal neurotransmitter concentration, v

pre
syn sets the voltage at which vesicles begin to

open, kpre sets the “sharpness” of the switch, and the scale factor ᾱs allows one to
lump the effects of all the synapses between the two cells.

As for the internal ionic currents in the HH model, the postsynaptic current in cell
j due to an AP in cell i involves a reversal potential, vpost

syn , and is scaled by a maximal
conductance, ḡsyn, so that the voltage equation for the postsynaptic cell is

Cv̇j = −Ij,ion(. . .) + Ij − ḡsynPs
(
vj − v

post
syn

)
. (14)

Equation (14) and the analogous voltage equations for all presynaptic cells, with their
associated full or reduced gating equations, are solved together with (12). See Ghigli-
azza and Holmes (2004a) for examples.

This model can be simplified by noting that the rapid rise and fall of the AP vi ,
acting via (13), makes αs(vi) behave like a rectangular pulse with duration of the
AP and height ᾱsCNT,max. Equation (12) may then be solved explicitly during and
following the AP and the resulting exponentials matched to produce a piecewise-
smooth rising and falling pulse. Alternatively, this may be approximated as a sum of
two exponentials or as an “alpha” function:

Ps(t) = Pmaxt

τs
exp

(
1 − t

τs

)
, t ≥ 0, (15)

which starts at zero, rises to a peak Pmax at t = τs, and then decays back to zero
with time constant τs. For further discussions of synaptic mechanisms, see Dayan
and Abbott (2001), Keener and Sneyd (2009, Chap. 8) and Johnston and Wu (1997,
Chaps. 11–15).

As noted in Sect. 2.1, Hodgkin and Huxley modeled the propagation of APs along
an axon by adding a diffusive spatial term to (1a) (Hodgkin and Huxley 1952d). More
complex geometries including branching dendrites and axons are often represented
by multiple compartments (sometimes in the hundreds). This leads to large sets of
ODEs for each cell, but allows one to capture subtle effects that influence intercellular
communication. Not only do dendrite sizes affect their conductances (Rall 1959) and
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transmission delays occur in dendritic trees, but EPSPs arriving at nearby synapses
interact to produce less excitation than their sum predicts (Rall et al. 1967). Nonlinear
interactions due to shunting inhibition that changes membrane conductance can also
reduce excitatory currents (Rall 1964). See London and Häusser (2005) for reviews
of such “dendritic computations.”

3 Central Pattern Generators and Phase Reduction

Central pattern generators (CPGs) are networks in the spinal cords of vertebrates
and invertebrate thoracic ganglia, capable of generating muscular activity in the ab-
sence of sensory feedback (Cohen et al. 1988; Getting 1988; Pearson 2000; Marder
2000; Ijspeert 2008), cf (Wilson 1999, Chaps. 12–13). CPGs drive many rhythmic ac-
tions, including locomotion, scratching, whisking (e.g. in rats), moulting (in insects),
chewing and digestion. The stomato-gastric ganglion in lobster is perhaps the best-
understood example (Marder and Bucher 2007). Experiments are typically done in
isolated in vitro preparations, with sensory and higher brain inputs removed (Cohen
et al. 1988; Grillner 1999), but it is increasingly acknowledged that an integrative
approach, including muscle and body-limb dynamics, environmental reaction forces
and proprioceptive feedback, is needed to fully understand their function (Chiel and
Beer 1997; Holmes et al. 2006; Tytell et al. 2011). Indeed, without reaction forces,
animals would go nowhere! CPGs nonetheless provide examples of neural networks
capable of generating interesting behaviors, but small enough to allow the study of
detailed biophysically based models.

After introducing a phase reduction method that is particularly useful for such
systems and applies to any ODE with a hyperbolic limit cycle and showing how it
leads to systems of coupled phase oscillators via averaging theory, I describe a model
of an insect CPG. For an early review of CPG models that use phase reduction and
averaging, see Kopell (1988).

3.1 Phase Reduction and Phase Response Curves

Phase reduction was originally developed by Malkin (1949, 1956), and indepen-
dently, with biological applications in mind, by Winfree (2001). For extensive treat-
ments, see Hoppensteadt and Izhikevich (1997, Chap. 9) and Ermentrout and Terman
(2010, Chap. 8). Consider a system

ẋ = f(x) + εg(x, . . .); x ∈ R
n, 0 ≤ ε � 1, n ≥ 2, (16)

where g(x, . . .) represents external inputs (e.g. (16) might be an ODE of HH type
(1a)–(1d)) or a busting neuron model (Sect. 2.4). Suppose that (16) possesses a stable
hyperbolic limit cycle Γ0 of period T0 for ε = 0, and let x0(t) denote a solution ly-
ing in Γ0. Invariant manifold theory (Hirsch et al. 1977; Guckenheimer and Holmes
1983) guarantees that, in a neighborhood U of Γ0, the state space splits into a phase
variable ϕ ∈ [0,2π) along the closed curve Γ0 and a smooth foliation of transverse
isochrons (Guckenheimer 1975). Each isochron is an (n − 1)-dimensional manifold
Mϕ with the property that any two solutions starting on the same leaf Mϕi

are mapped
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Fig. 7 The direct method for
computing the PRC, showing
the geometry of isochrons, the
effect of the perturbation at x∗
that results in a jump to a new
isochron, recovery to the limit
cycle, and the resulting phase
shift. Adapted from Brown et al.
(2004)

by the flow to another leaf Mϕj
and hence approach Γ0 with equal asymptotic phases

as t → ∞: see Fig. 7. For points x ∈ U , phase is therefore defined by a smooth func-
tion ϕ(x) and the leaves Mϕ ⊂ U are labeled by the inverse function x(ϕ). Moreover,
this structure persists for small ε > 0, so Γ0 perturbs to a nearby limit cycle Γε .

The phase coordinate ϕ(x) is chosen so that progress around the limit cycle occurs
at constant speed when ε = 0:

ϕ̇
(
x(t)

)∣∣
x∈Γ0

= ∂ϕ(x(t))

∂x
· f

(
x(t)

)∣∣∣∣
x∈Γ0

= 2π

T0

def= ω0. (17)

Applying the chain rule, using (16) and (17), we obtain the scalar phase equation:

ϕ̇ = ∂ϕ(x)

∂x
· ẋ = ω0 + ε

∂ϕ

∂x
· g

(
x0(ϕ), . . .

)∣∣
Γ0(ϕ)

+O
(
ε2). (18)

The assumption that coupling and external influences are weak (ε � 1) allows ap-
proximation of their effects by evaluating g(x, . . .) along Γ0.

For spiking-neuron models in which inputs enter only via the voltage equation

(e.g., (1a)–(1d)), the only nonzero component in the vector ∂ϕ
∂x is ∂ϕ

∂V
= ∂ϕ

∂x · ∂x
∂V

def=
z(ϕ). This phase response curve (PRC) describes how an impulsive perturbation ad-
vances or retards the next spike as a function of the phase during the cycle at which
it acts. PRCs may be calculated using a finite-difference approximation to the deriva-
tive:

z(ϕ) = ∂ϕ

∂V
= lim

V →0

[
ϕ(x∗ + (V,0)T) − ϕ(x∗)

V

]
, (19)

where the numerator ϕ = [ϕ(x∗+(V,0)T)−ϕ(x∗)] describes the change in phase
due to the delta function perturbation V → V +V at x∗ ∈ Γ0: see Fig. 7. PRCs may
also be found from adjoint equations (Ermentrout and Terman 2010, Chap. 8).

3.2 Weak Coupling, Averaging and Half-Center Oscillators

A common structure appearing in GPG models is the half-center oscillator: a pair of
units, often identical and hence bilaterally (or reflection-) symmetric and sometimes
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each containing several neurons, connected via mutual inhibition to produce an alter-
nating rhythm (Ermentrout and Terman 2010, Sect. 9.6). See Hill et al. (2001), Daun-
Gruhn et al. (2009), Doloc-Mihu and Calabrese (2011) and Wilson (1999, Sect. 13.1)
for examples. Phase reduction provides a simple expression of this architectural sub-
unit, which can be written as a system on the torus:

ϕ̇1 = ω0 + ε
[
δ1 + z1(ϕ1)h1(ϕ1, ϕ2)

] def= ω0 + εH1(ϕ1, ϕ2), (20a)

ϕ̇2 = ω0 + ε
[
δ2 + z2(ϕ2)h2(ϕ2, ϕ1)

] def= ω0 + εH2(ϕ2, ϕ1). (20b)

Here small frequency differences εδj are allowed and the O(ε2) terms neglected.
Transformation to slow phases ψi = ϕi − ω0t removes the common frequency ω0
and puts (20a)–(20b) in a form to which the averaging theorem for periodically forced
ODEs can be applied (Guckenheimer and Holmes 1983, Sect. 4.1–2):

ψ̇1 = εH1(ψ1 + ω0t,ψ2 + ω0t), (21a)

ψ̇2 = εH2(ψ2 + ω0t,ψ1 + ω0t). (21b)

Recalling that the common period of the uncoupled oscillators is T0, the averages
of the terms on the RHS of (21a)–(21b) are

Hi(ψi,ψj ) = 1

T0

∫ T0

0
Hi(ψi + ω0t,ψj + ω0t)dt. (22)

Changing variables by setting τ = ψj + ω0t , so that dt = dτ
ω0

= T0 dτ
2π

, and using the
fact that the Hi are 2π -periodic, the integral of (22) becomes

Hi(ψi,ψj ) = 1

2π

∫ 2π

0
Hi(ψi − ψj + τ, τ )dτ

def= Hi(ψi − ψj); (23)

hence the averaged system (up to O(ε2)) is

ψ̇1 = εH1(ψ1 − ψ2), ψ̇2 = εH2(ψ2 − ψ1). (24)

The functions Hi(ψi − ψj) are 2π -periodic and depend only on phase difference
θ = ψ1 − ψ2. Equations (24) may therefore be subtracted to yield

θ̇ = ε
[
H1(θ) − H2(−θ)

] def= εG(θ). (25)

Phase reduction and averaging have simplified a system with at least two voltage
variables, associated gating variables, and possibly additional synaptic variables, to a
flow on the circle.

For mutually symmetric coupling between identical units, h2(ϕ2, ϕ1) = h1(ϕ1, ϕ2)

in (20a)–(20b). Integration preserves this symmetry under permutation of ϕ1 and ϕ2,

so that the averaged functions satisfy H2(−θ) = H1(θ)
def= H(θ). In this case, since H

is 2π -periodic, G(π) = H(π) − H(−π) = H(π) − H(π) = 0 and G(0) = H(0) −
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Fig. 8 A model for the cockroach CPG. Units 1, 2, 3 (resp. 4, 5, 6), activating the left (resp. right)
tripods, are coupled through mutually inhibitory synapses and modulate each leg’s hip and knee extensor
(resp. flexor) motoneurons via inhibitory (resp. excitatory) synapses, shown as filled circles and semi-arcs,
respectively; only right front leg motoneurons shown here. Tonic drive is applied to all units by constant
external currents. See Ghigliazza and Holmes (2004b,a) for further details. Figure adapted from Kukillaya
et al. (2009)

H(0) = 0. Equation (25) therefore has fixed points at θ = 0,π , corresponding to in-
phase and anti-phase solutions, regardless of the precise form of H . Moreover, G is
odd and its derivative G′(θ) is even (see Fig. 9 below). Additional fixed points θe

such that G(θe) = 0 may also exist, depending on H . Nonsymmetric pairs generally
do not have exact in- and anti-phase solutions.

Under the averaging theorem (Guckenheimer and Holmes 1983, Sect. 4.1–2), hy-
perbolic fixed points of (24) correspond to T0-periodic orbits of the original sys-
tem (20a)–(20b). Since θ = ψ1 − ψ2, fixed points θe of (25) appear as circles in the
toroidal phase space of (24), and their linearization necessarily has a zero eigenvalue
with eigenvector (1,1)T. This lack of hyperbolicity derives from the transformation
ψi = ϕi − ω0t , so the circles are T0-periodic orbits in the original ϕi variables (note
that ϕ1 − ϕ2 = θe). Provided that the other eigenvalue is nonzero, with eigenvector
transverse to (1,1)T, it follows that the original system has a periodic orbit whose
phases maintain the difference θe to O(ε). The dynamics are necessarily only neu-
trally stable to perturbations that equally advance or retard the phases of both units.

3.3 A CPG Model for Insect Locomotion

This section describes a CPG model for hexapedal locomotion (Ghigliazza and
Holmes 2004b,a) motivated by experiments on the cockroach Periplaneta ameri-
cana (Pearson and Iles 1970, 1973; Pearson 1972; Pearson and Fourtner 1975). It uses
bursting neuron and synapse models of the types described in Sects. 2.4 and 2.5 for
which PRCs and averaged coupling functions were computed numerically (Ghigli-
azza and Holmes 2004a) to derive a phase reduced model. The network, including
motoneurons, is shown in Fig. 8.

Cockroaches run over much of their speed range with a double tripod gait, in which
left front, left rear and right middle legs (the L tripod) alternate with right front, right
rear and left middle legs (the R tripod) to provide stance support. Motoneurons acti-
vating depressor and extensor muscles that drive the power stroke during stance are
alternately active in the L and R tripods, and neighboring legs on the same side (ip-
silateral) and across the body (contralateral) operate approximately in anti-phase. In
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Fig. 8 cells 1, 2, 3 drive the L tripod and 4, 5, 6 drive the R tripod. Extensors spike
persistently to support the animal’s weight when standing still: they must be deacti-
vated to swing the leg in running; in contrast, flexors must shut off during stance. As
proposed in Pearson (1972), Pearson and Iles (1973), during its burst a single CPG
interneuron can simultaneously inhibit an extensor and excite a flexor; during the in-
terneuron’s refractory phase the extensor can resume spiking and the excitable flexor
remain hyperpolarized and inactive. The model simplifies by allowing excitatory and
inhibitory synapses on the same axon; in reality at least one disynaptic path would be
necessary.

Little is known about architecture and neuron types in the cockroach, but represen-
tation of each leg unit by a single bursting cell, as in Fig. 8, is certainly minimal. For
example, hemisegments of lamprey spinal cord each contain three different cell types
as well as motoneurons (Buchanan and Grillner 1987; Hellgren et al. 1992; Wallen
et al. 1992; Várkonyi et al. 2008), and in stick insects separate oscillators with mul-
tiple interneurons have been identified for each joint on a single leg (Daun-Gruhn
2011; Daun-Gruhn and Toth 2011; Toth and Daun-Gruhn 2011).

In Fig. 8 one-way paths connect CPG interneurons to motoneurons, so the basic
stepping rhythm is determined by the six CPG units, which may be studied in isola-
tion. The reduced phase CPG model is

ψ̇1 = ḡsynH(ψ1 − ψ4) + ḡsynH(ψ1 − ψ5),

ψ̇2 = ḡsyn

2
H(ψ2 − ψ4) + ḡsynH(ψ2 − ψ5) + ḡsyn

2
H(ψ2 − ψ6),

ψ̇3 = ḡsynH(ψ3 − ψ5) + ḡsynH(ψ3 − ψ6),

ψ̇4 = ḡsynH(ψ4 − ψ1) + ḡsynH(ψ4 − ψ2), (26)

ψ̇5 = ḡsyn

2
H(ψ5 − ψ1) + ḡsynH(ψ5 − ψ2) + ḡsyn

2
H(ψ5 − ψ3),

ψ̇6 = ḡsynH(ψ6 − ψ2) + ḡsynH(ψ6 − ψ3),

where all cells are identical and connection strengths are chosen so that the net effect
on each cell from its presynaptic neighbors is the same. The middle leg cells 2 and
5 receive three inputs, and front and hind leg cells receive two, hence the ipsilateral
connections from front and hind to middle are of strength ḡsyn/2.

The PRC is a complicated function with multiple sign changes caused by the burst
of spikes (not shown here, see Ghigliazza and Holmes (2004a, Fig. 7)), but the inte-
gral required by averaging yields fairly simple functions H(−θ) and H(θ): Fig. 9.
Their subtraction produces an odd function G(θ) with zeroes at θ = 0 and π , as noted
in Sect. 3.2, that is also remarkably close to a simple sinusoid, as assumed in an ear-
lier phase oscillator model for lamprey CPG (Cohen et al. 1982), although this was
not justified for some 25 years (Várkonyi et al. 2008).

Seeking L-R tripod solutions of the form ψ1 = ψ2 = ψ3 ≡ ψL(t), ψ4 = ψ5 =
ψ6 ≡ ψR(t), (26) collapse to the pair of ODEs

ψ̇L = 2ḡsynH(ψL − ψR) and ψ̇R = 2ḡsynH(ψR − ψL), (27)
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Fig. 9 (a) The coupling
function ḡsynHji(θ) (solid) for
an inhibitory synapse;
ḡsynHji(−θ) also shown
(dash-dotted). (b) The phase
difference coupling function
ḡsynG(θ) = ḡsyn[Hji(θ) −
Hji(−θ)]. Note that
G(0) = G(π) = 0 and
ḡsynG′(0) > 0 > ḡsynG′(π).
From Ghigliazza and Holmes
(2004a)

and the arguments used in Sect. 3.2 may be applied to conclude that ψR = ψL + π

and ψR = ψL are fixed points of (27), independent of the precise form of H . For this
argument to hold, note that the sums on the right-hand sides of the first three and
last three equations of (26) must be identical when evaluated on the tripod solutions;
hence, net inputs to each cell from its synaptic connections must be equal. Also, since
for ḡsyn > 0 we have G′(0) > 0 > G′(π) (Fig. 9(b)), so that we expect the in-phase
solution to be unstable and the anti-phase one to be stable. To confirm this in the full
six-dimensional phase space we compute the 6 × 6 Jacobian matrix:

ḡsyn

⎡
⎢⎢⎢⎢⎢⎢⎣

2H ′ 0 0 −H ′ −H ′ 0
0 2H ′ 0 −H ′/2 −H ′ −H ′/2
0 0 2H ′ 0 −H ′ −H ′

−H ′ −H ′ 0 2H ′ 0 0
−H ′/2 −H ′ −H ′/2 0 2H ′ 0

0 −H ′ −H ′ 0 0 2H ′

⎤
⎥⎥⎥⎥⎥⎥⎦

, (28)

with derivatives H ′ evaluated at appropriate phase differences π or 0. The anti-
phase tripod solution ψL − ψR = π has one zero eigenvalue with eigenvector
(1,1,1,1,1,1)T; the remaining eigenvalues and eigenvectors are

λ = ḡsynH
′(π) : (1,0,−1,1,0,−1)T,

λ = 2ḡsynH
′(π),m = 2 : (1,−1,1,0,0,0)T and (0,0,0,−1,1,−1)T,

λ = 3ḡsynH
′(π) : (1,0,−1,−1,0,1)T, (29)

λ = 4ḡsynH
′(π) : (1,1,1,−1,−1,−1)T.

Since ḡsynH
′(π) < 0 (Fig. 9(a)), this proves asymptotic stability with respect to per-

turbations that disrupt the tripod phase relationships; moreover, the system recovers
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fastest from perturbations that disrupt the relative phasing of the L and R tripods
(λ = 4ḡsynH

′: last entry of (29)). Since ḡsynH
′(0) > 0 (Fig. 9(a)), the pronking gait

with all legs in phase (ψL(t) ≡ ψR(t)) is unstable.
This CPG model was created in the absence of information on coupling strengths

among different hemisegments, and symmetry assumptions were made for mathe-
matical convenience, allowing the reduction to a pair of tripod oscillators. Recent
experiments support bilateral symmetry, but indicate that descending connections are
stronger than ascending ones (Fuchs et al. 2011). Similar rostral-caudal asymmetries
have been identified in the lamprey spinal cord (Hagevik and McClellan 1994; Ayali
et al. 2007). The model is currently being modified to fit the data.

In introducing this section it was noted that integrated neuro-mechanical models
are needed to better understand the rôle of CPGs in producing locomotion. Examples
of these for the cockroach appear in Kukillaya and Holmes (2007, 2009) and, with
proprioceptive feedback, in Proctor and Holmes (2010), Kukillaya et al. (2009). Mod-
els for lamprey swimming can be found in McMillen and Holmes (2006), McMillen
et al. (2008), Tytell et al. (2010).

4 Models of Perceptual Decisions

I now move to a different topic and scale to consider decision making, specficially
two-alternative forced-choice (2AFC) tasks and stochastic accumulator models that
describe average activities of large groups of cortical neurons. These belong to a gen-
eral class of connectionist neural networks (Rumelhart and McClelland 1986), which,
while not directly connected to cellular-level descriptions such as the HH equations,
are still biologically plausible. Specifically, in nonhuman primates performing per-
ceptual decisions, intracellular recordings in oculomotor regions such as the lateral
intraparietal area (LIP), frontal eye fields, and superior colliculus show that spike
rates evolve like sample paths of a stochastic process, rising to a threshold prior to
response (Schall 2001; Gold and Shadlen 2001; Shadlen and Newsome 2001; Roit-
man and Shadlen 2002; Ratcliff et al. 2003, 2006; Mazurek et al. 2003). In special
cases accumulators reduce to drift-diffusion (DD) processes, which have been used
to model reaction time distributions and error rates in 2AFC tasks for over 50 years,
e.g. Stone (1960), Laming (1968), Ratcliff (1978), Ratcliff et al. (1999), Smith and
Ratcliff (2004). Subsequently, Sect. 5 sketches how biophysically based neural net-
works can be reduced to nonlinear leaky competing accumulator (LCAs), providing
a path from biological detail to tractable models. For a broad review of decision mod-
els, see Doya and Shadlen (2012).

4.1 Accumulators and Drift-Diffusion Processes

In the simplest LCA a pair of units with activity levels (x1, x2) represent pools of
neurons selectively responsive to two stimuli (Usher and McClelland 2001). These
mutually inhibit via functions that express neural activity (e.g., short-term firing rates)
in terms of inputs that include constant currents representing mean stimulus levels and
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i.i.d. Wiener processes modeling noises that pollute the stimuli and/or enter the local
circuit from other brain regions, as described by the stochastic differential equations:

dx1 = [−γ x1 − βf (x2) + μ1
]

dt + σ dW1, (30)

dx2 = [−γ x2 − βf (x1) + μ2
]

dt + σ dW2, (31)

where γ,β are leak and inhibition rates and μj ,σ the means and standard deviation
of the noisy stimuli. A decision is reached when the first xj (t) exceeds a thresh-
old xj,th. See Rumelhart and McClelland (1986), Grossberg (1988), Usher and Mc-
Clelland (2001) for background on related connectionist networks, and Miller and
Fumarola (2012) on the equivalence of different integrator models. For stochastic
ODEs, see Gardiner (1985), Arnold (1974).

The function characterizing neural response is typically sigmoidal:

f (x) = 1

1 + exp[−g(x − b)] , (32)

or piecewise linear (Usher and McClelland 2001; Brown et al. 2005). With appro-
priate gain g and bias b (30–31) without noise (σ = 0) can have one or two sta-
ble equilibria, separated by a saddle point. In the noisy system these correspond to
“choice attractors,” and if γ and β are sufficiently large, a one-dimensional, attracting
curve exists that contains the equilibria and orbits connecting them: see Feng et al.
(2009, Fig. 2) and Brown et al. (2005). Hence, after rapid transients decay follow-
ing stimulus onset, the dynamics relax to that of a nonlinear Ornstein–Uhlenbeck
(OU) process (Brown et al. 2005; Roxin and Ledberg 2008). The dominant terms are
found by linearizing (30–31) and subtracting to yield an equation for the difference
x = x1 − x2:

dx = [
(μ1 − μ2) + (β − γ )x

]
dt + σ dW. (33)

If leak and inhibition are balanced (β = γ ), and initial data are unbiased, appropri-
ate when stimuli appear with equal probability and have equal reward values, (33) be-
comes a DD process

dx = Adt + σ dW ; x(0) = 0, (34)

where A = μ1 − μ2 denotes the drift rate. Responses are given when x first crosses a
threshold ±xth; if A > 0 then crossing of +xth corresponds to a correct response and
crossing −xth to an incorrect one. Here x is the logarithmic likelihood ratio (Gold and
Shadlen 2002; Bogacz et al. 2006), measuring the difference in evidence accumulated
for the two options. The error rate and mean decision time are

p(err) = 1

1 + exp(2ηθ)
and 〈DT〉 = θ

[
exp(2ηθ) − 1

exp(2ηθ) + 1

]
, (35)

Busemeyer and Townsend (1993) and Bogacz et al. (2006, Appendix). Here the three
parameters A,σ and xth reduce to two: η ≡ (A/σ)2, signal-to-noise ratio (SNR),
having units of inverse time, and θ ≡ |xth/A|, threshold-to-drift ratio, the decision



J Nonlinear Sci

time for noise-free drift x(t) = At . Accuracy may be adjusted by changing xth or the
initial condition x(0), see Sect. 4.7 below.

The DD process (34) is a continuum limit of the sequential probability ratio
test (Wald and Wolfowitz 1948) which, for statistically stationary signal detec-
tion tasks, yields decisions of specified average accuracy in the shortest possible
time (Gold and Shadlen 2002; Bogacz et al. 2006). This property leads to an opti-
mal speed-accuracy tradeoff that maximizes reward rate, enabling the experiments
and analyses described below.

4.2 An Optimal Speed-Accuracy Tradeoff

If SNR and the mean delay between each response and next stimulus onset (response-
to-stimulus interval DRSI) remain constant across each block of trials and block dura-
tions are fixed, optimality corresponds to maximising reward rate: average accuracy
divided by average trial duration:

RR = 1 − p(err)

〈DT〉 + T0 + DRSI
. (36)

Here T0 is the part of reaction time due to non-decision-related sensory and motor
processing. Since T0 and η also typically remain (approximately) constant for each
participant, we may substitute (35) into (36) and maximize RR for fixed η,T0 and
DRSI, obtaining a unique threshold-to-drift ratio θ = θop for each pair (η,Dtot):

exp(2ηθop) − 1 = 2η(Dtot − θop), where Dtot = T0 + DRSI. (37)

Inverting the relationships (35) to obtain

θ = 〈DT〉
1 − 2p(err)

and η = 1 − 2p(err)

2〈DT〉 log

[
1 − p(err)

p(err)

]
, (38)

the parameters θop, η in (37) can be replaced by the performance measures, p(err) and
〈DT〉, yielding a unique, parameter-free relationship describing the speed-accuracy
tradeoff that maximizes RR:

〈DT〉
Dtot

=
[

1

p(err) log[ 1−p(err)
p(err) ] + 1

1 − 2p(err)

]−1

. (39)

Equation (39) defines an optimal performance curve (OPC) (Bogacz et al. 2006):
Fig. 10(a). Different points on the OPC represent θop’s and corresponding speed-
accuracy trade-offs for different values of difficulty (η) and timing (Dtot): lower or
higher thresholds, associated with faster or slower responses, yield lower rewards (di-
amonds in Fig. 10(a)). The OPC’s shape is intuitively understood by noting that very
noisy stimuli (η ≈ 0) contain little information, so that, if they are equally likely, it
is optimal to choose at random, giving p(err) = 0.5 and 〈DT〉 = 0 (SNR = 0.1 at
the right of Fig. 10(a)). As η → ∞, stimuli become so easily discriminable that both
〈DT〉 and p(err) approach zero (SNR = 100). Intermediate SNRs require some in-
tegration of evidence (SNR = 1,10). Being parameter free, the OPC can be used to
compare performance with respect to optimality across conditions, tasks, and indi-
viduals, irrespective of differences in difficulty or timing.
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Fig. 10 (a) The optimal performance curve (OPC) of (39) relates mean normalized decision time
〈DT〉/Dtot to error rate p(err). Triangles and circles mark hypothetical performances under eight dif-
ferent task conditions; diamonds mark suboptimal performances resulting from thresholds at ±1.25θop
for SNR = 1 and Dtot = 2, respectively more accurate but too slow (upper diamond), and faster but less
accurate (lower diamond); both reduce RR by ≈ 1.3 %. (b) OPC (curve) and data from 80 human partici-
pants (boxes) sorted according to total rewards accrued over all conditions. White: all participants; lightest:
lowest 10 % excluded; medium: lowest 50 % excluded; darkest: lowest 70 % excluded. Vertical lines show
standard errors. From Bogacz et al. (2006), Zacksenhouse et al. (2010)

4.3 Experimental Evidence: Failures to Optimize

Two 2AFC experiments (Bogacz et al. 2006, 2010) tested whether humans optimize
reward rate in accord with the OPC. In the first, 20 participants viewed motion stim-
uli (Britten et al. 1993) and were rewarded for correct responses. Trials were grouped
in 7-minute blocks with different DRSI’s fixed through each block. In the second ex-
periment, 60 participants discriminated if the majority of 100 locations on a static dis-
play were filled with stars or empty. Two difficulty conditions were used in 4-minute
blocks. Participants were told to maximize total earnings, and practice blocks were
administered prior to testing.

Mean decision times 〈DT〉’s were estimated by fitting the DD model to reac-
tion time distributions; the 0–50 % error-rate range was divided into 10 bins, and
〈DT/Dtot〉 were computed for each bin by averaging over those results and condi-
tions with error rates in that bin. This yields the open (tallest) bars in Fig. 10(b);
the shaded bars derive from similar analyses restricted to subgroups of participants
ranked by their total rewards accrued over all different conditions. The top 30 %
group performs close to the OPC, achieving near-optimal performance, but a major-
ity of participants are significantly suboptimal due to longer decision times (Bogacz
et al. 2010). This suggests two possibilities:

(1) Participants seek to optimize another criterion, such as accuracy, instead of, or as
well as, maximizing reward.

(2) Participants seek to maximize reward, but systematically fail due to constraint(s)
on performance and/or other cognitive factors. We now address these.
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4.4 A Preference for Accuracy?

A substantial literature suggests that humans favor accuracy over speed in reaction
time tasks (e.g., Myung and Busemeyer 1989). This could explain the observations in
Fig. 10(b), since longer decision times typically lead to greater accuracy. Participants
may seek to maximize accuracy in addition to rewards (Maddox and Bohil 1998;
Bohil and Maddox 2003). This can be expressed in at least two ways (Bogacz et al.
2006):

RA = RR − qp(err)

Dtot
, or RRm = (1 − p(err)) − qp(err)

〈DT〉 + Dtot
. (40)

The first (reward + accuracy, RA) subtracts a fraction of error rate from RR; the sec-
ond (modified reward rate, RRm) penalizes errors by reducing previous winnings. In
both the parameter q ∈ (0,1) specifies a weight placed on accuracy. Increasing q

drives the OPC upward (Bogacz et al. 2006, Fig. 13), consistent with the empirical
observations of Fig. 10(b), suggesting that participants assume that errors are explic-
itly penalized.

However, alternative accounts of the data preserve the assumption of reward max-
imization. Specifically, timing uncertainty may degrade RR estimates, systematically
causing longer decision times, or participants may allow for costs of cognitive control
required for changing parameters, especially if these yield small increases in RR (cf.
diamonds in Fig. 10(a)).

4.5 Robust Decisions in the Face of Uncertainty?

In the analyses of Sects. 4.2–4.4 an objective function is maximized, given known
task parameters. However, accurate values may not be available: RR depends on inter-
trial delays and SNR, both of which may be hard to estimate. Information-gap the-
ory (Ben-Haim 2006) assumes that parameters lie in a bounded uncertainty set and
uses a maximin strategy to optimize a worst case scenario.

Interval timing studies (Buhusi and Meck 2005) indicate that time estimates are
normally distributed around the true duration with a standard deviation proportional
to it (Gibbon 1977). This prompted the assumption in Zacksenhouse et al. (2010)
that the estimated delay Dtot lies in a set Up(αp; D̃tot) = {Dtot > 0 : |Dtot − D̃tot| ≤
αpD̃tot}, of size proportional to the actual delay D̃tot, with uncertainty αp analogous
to the coefficient of variation in scalar expectancy theory (Gibbon 1977). Instead of
the optimal threshold of (37), the maximin strategy selects the threshold θMM that
maximizes the worst possible RR for Dtot ∈ Up(αp; D̃tot), yielding a one-parameter
family of maximin performance curves (MMPCs) (Zacksenhouse et al. 2010):

〈DT〉
Dtot

= (1 + αp)D̃tot

Dtot

[
1

p(err) log(
1−p(err)
p(err) )

+ 1

1 − 2p(err)

]−1

. (41)

Like the functions (40), (41) predicts longer mean decision times than the OPC (39),
of which they are scaled versions. Uncertain SNRs can be treated similarly, yield-
ing families of MMPCs that differ from both the OPC and (41), rising to peaks at
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Fig. 11 Comparisons of performance curves with mean normalized decision times (with SE bars) for
three groups of participants sorted by total rewards acquired. Different curves are identified by line style
and gray scale in the key, in which maximinD and maximinSNR refer to maximin performance curves
(MMPCs) for uncertainty in total delay (41) and noise variance respectively, robustD to robust-satisficing
performance curves (RSPCs) for uncertainty in total delay, RA and RRm denote the accuracy-weighted
objective functions of (40), and RR the OPC (39). Note different vertical axis scales in upper and lower
panels. From Zacksenhouse et al. (2010)

progressively smaller p(err) as uncertainty increases. An alternative strategy yields
robust-satisficing performance curves (RSPCs) (Zacksenhouse et al. 2010) that pro-
vide poorer fits and are not described here.

Figure 11 shows data fits to the parameter-free OPC, the functions RA and RRm

of (40), to MMPCs for timing uncertainty and SNR, and to RSPCs for timing un-
certainty. While there is little difference among fits to the top 30 %, data from the
middle 60 % and lowest 10 % subgroups exhibit patterns that distinguish among
the theories. Maximum likelihood computations show that MMPCs for uncertainties
in delays provide the best fits, followed by RSPCs for uncertainties in delays and
RA (Zacksenhouse et al. 2010). Thus, greater accuracy can emerge as a consequence
of maximizing RR under uncertainty rather than an objective of optimization.

4.6 Practice, Timing Uncertainty, or the Cost of Control?

To test whether deviations from the OPC are better explained by an emphasis on ac-
curacy or by timing uncertainty, Balci et al. (2011) conducted a 2AFC experiment
with motion stimuli encompassing a range of discriminabilities (moving dots (Brit-
ten et al. 1993) with 0 %,4 %,8 %,16 % and 32 % coherences fixed in each block),
and administered interval timing tests in parallel (Buhusi and Meck 2005). 17 par-
ticipants completed at least 13 sessions in each condition, increasing the likelihood
of achieving optimal performance by providing extensive training and allowing the
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Fig. 12 Mean normalized decision times (dots) grouped by coherence vs. error proportions for sessions
1 (highest points and curve, red), 2–5 (second highest points and curve, blue), 6–9 (green) and 10–13
(pink). Data points and fitted curves for sessions 6–13 are very similar. (a) Performance compared with
OPC (lowest curve, black) and best-fitting MMPCs for each coherence condition. Performance converges
toward the OPC, but DTs remain high for p(err) > 0.35. (b) Performance compared with DD fits to
single threshold for all coherences. Solid and dotted horizontal lines connect model fits and dotted vertical
lines connect data points from different sessions having the same coherence. Fits connected by solid lines
exclude 0 and 4 % coherences; fits connected by dotted lines include all coherences. Single threshold fits
capture longer DTs at high error rates better than OPC and MMPCs. Panel (b) adapted from Balci et al.
(2011) (Color figure online)

study of practice effects (Dutilh et al. 2009; Petrov et al. 2011). There were four main
findings.

First, average performance converges toward the OPC with increasing experience.
Figure 12(a) shows mean normalized decision times (dots) for five error bins averaged
over sessions 1, 2–5, 6–9 and 10–13. Performance during the final two sets of sessions
is indistinguishable from the OPC for higher coherences, but decision times remain
significantly above the OPC for 0 and 4 % coherences.

Second, the accuracy-weighted objective function RRm of (40) outperforms the
OPC in fitting decision times, with accuracy weight decreasing monotonically
through sessions 1–9 and thereafter remaining at q ≈ 0.2 (not shown here, see Balci
et al. (2011, Fig. 9)), suggesting that participants may initially favor accuracy, but
that this diminishes with practice.

Third, timing inaccuracy throughout all but the first session, independently as-
sessed by participants’ coefficients of variation in a peak-interval task, is significantly
correlated with their distances from the OPC (Balci et al. 2011). Moreover, this pro-
vides a better account of deviations from the OPC than weighting accuracy by the
parameter q in RRm, supporting the hypothesis that humans can learn to maximize
rewards by devaluing accuracy, with a deviation from optimality inversely related
to their timing ability. However, even after long practice, MMPCs based on timing
uncertainty fail to capture performance for the two lowest coherences (Fig. 12(a)),
suggesting that other factors may be involved, including the cost of cognitive con-
trol (Posner and Snyder 1975).

To test this fourth possibility, Balci et al. (2011) computed the single optimal
threshold over all coherence conditions. Figure 12(b) shows that the resulting curve
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fits the full range of data for later sessions (6–13), suggesting that, given practice,
participants adopted such a threshold. Rewards for this single threshold differed little
from those for thresholds optimized for each coherence condition, suggesting that
participants may seek one threshold that does best over all conditions, avoiding es-
timation of coherences and control of thresholds from block to block. Control costs
are discussed in Holmes and Cohen (2014).

4.7 Prior Expectations and Trial-to-Trial Adjustments

Given prior information on the probabilities of observing each stimulus in a 2AFC
task, a DD process can be optimized by appropriately shifting the initial condition
x(0); rewards that favor one response over the other can be treated similarly (Bo-
gacz et al. 2006). Comparisons of these predictions with human behavioral data were
carried out in Simen et al. (2009), finding that participants achieved 97–99 % of
maximum reward. A related study of monkeys used a fixed stimulus presentation pe-
riod that obviates the need for a speed-accuracy tradeoff, but in which differences
in rewards for the two responses were signaled before each trial and motion coher-
ences varied randomly between trials. The animals achieved 98 % and 99.5 % of
maximum rewards (Feng et al. 2009), and fits of LIP recordings to an accumulator
model (Gao et al. 2011) indicated that this was also done by shifting initial condi-
tions. Human behavioral studies revealed similar near-optimal shifts in response to
biased rewards (Gao et al. 2011).

Humans also exhibit adjustment effects in response to repetition and alternation
patterns that necessarily occur, given stimuli chosen with equal probability (Soetens
et al. 1985). Accumulator models developed in Cho et al. (2002), Jones et al. (2002),
Gao et al. (2009), Goldfarb et al. (2012) indicate that this is also due to initial condi-
tion shifts, presumably due to expectations that patterns will persist even when stimuli
are purely random. In fact pattern recognition is advantageous in natural situations, al-
lowing prior beliefs to adapt to match stationary or slowly changing environments (Yu
and Cohen 2009).

The work described in this section depends on simple models that at first reproduce
previous data, then predict outcomes of new experiments, and finally admit analyses
and modifications that account for differences between predictions and the new data.
The explicit OPC expression (39) is crucial here; it seems unlikely that such predic-
tions could readily emerge from computational simulations alone. These models are
certainly useful, but they do not immediately connect to cellular-level descriptions
such as those of Sects. 2–3. We now discuss this connection.

5 Connecting the Levels

The accumulator models of Sect. 4 address optimality constraints at the systems level,
but they are too abstract to identify mechanisms or constraints arising from underly-
ing neural circuits. To do this the abstract models must be related to biophysical
aspects of neural function. For example, spiking-neuron models can be reduced in
dimension by averaging over populations of cells (Brunel and Wang 2001; Wong
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Fig. 13 (a) The IF network of Eckhoff et al. (2009, 2011) contains three populations of excitatory cells;
one is non-selective, and each selective population has relatively stronger self-excitation and responds
preferentially to one stimulus. Interneurons provide overall inhibition. Excitatory and inhibitory synapses,
denoted by filled and open ovals, respectively, are all to all. (b) Stimuli excite both selective populations,
but inhibition typically suppresses one; a decision is made when the averaged firing rate of the first popu-
lation crosses threshold. Adapted from Eckhoff et al. (2009)

and Wang 2006; Eckhoff et al. 2011; Deco et al. 2013), allowing them to include
the effects of synaptic time constants and neurotransmitters that can change cellular
excitability and synaptic efficacy (Berridge and Waterhouse 2003; Aston-Jones and
Cohen 2005; Sara 2009), effectively adjusting gains g in frequency–current functions
(32) (Servan-Schreiber et al. 1990). I describe one such reduction in this section. For
a review of spiking models for decision making, see Wang (2008).

5.1 Reduction of a Spiking Model to Accumulators

In Eckhoff et al. (2009) the network model of a microcircuit in area LIP (Wang
2002; Wong and Wang 2006) was extended to simulate the effects of NE release
on excitatory (AMPA, NMDA) and inhibitory (GABA) receptors, showing that co-
modulation can tune speed and accuracy to provide good performance over a sub-
stantial parameter range. The network contains 2000 leaky IF neurons in four groups:
two stimulus-selective populations each containing 240 excitatory (pyramidal) cells,
a non-selective pool of 1120 excitatory cells, and an inhibitory population of 400
interneurons: Figure 13. The state variables are transmembrane voltages vj (t) and
synaptic activities sAMPA,j (t), sNMDA,j (t) and sGABA,j (t), described by the follow-
ing ODEs:

Cj

dvj

dt
= −gL(vj − vL) + Isyn,j (t), (42)

dstype,j

dt
= − stype,j

Ttype
+

∑
l

δ
(
t − t lj

)
. (43)

Here Isyn,j (t) = −∑
type,k gtype,kstype,k(vk − vE), type = AMPA, GABA, or

AMPA-ext, Ttype is the time constant for that synapse type, k ranges over all cell j ’s
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presynaptic neurons, and superscripts l index times t lj at which the j th cell crosses
a threshold vth, emits a delta function and is reset to vr for a refractory period τref,
cf. Sect. 2.3 and Fig. 5. The NMDA dynamics require two ODEs to model fast rise
followed by slow decay (Eckhoff et al. 2011), cf. Sect. 2.5:

dsNMDA,j (t)

dt
= − sNMDA,j (t)

τNMDA,decay
+ αxj (t)

[
1 − sNMDA,j (t)

]
, (44)

dxj (t)

dt
= − xj (t)

τNMDA,rise
+

∑
l

δ
(
t − t lj

)
. (45)

External inputs sAMPA-ext,j (t), modeled by OU processes driven by Gaussian
noise of mean μ and standard deviation σ , enter all cells:

dsAMPA-ext,j = − (sAMPA-ext,j − μ)dt

τAMPA
+ σ dWj . (46)

Stimuli are represented by modified mean inputs μ(1 ± E) to the selective cells with
appropriately adjusted variances σj , where E ∈ [0,1] denotes stimulus discriminabil-
ity (E = 1 for high SNR; E = 0 for zero SNR). Neuromodulation is represented by
multiplying excitatory and inhibitory conductances gAMPA,k, gNMDA,k and gGABA,k

by factors γE , γI . Eliminating irrelevant stype,j ’s (excitatory neurons do not release
GABA, inhibitory neurons do not release AMPA or NMDA), (42–46) constitute a
9200-dimensional hybrid, stochastic dynamical system that is analytically intractable
and computationally demanding.

Following the mean-field method of Brunel and Wang (2001), Renart et al. (2003),
Wong and Wang (2006), the network is first reduced to four populations by assum-
ing a fixed average voltage v̄ = (vr + vth)/2 to estimate synaptic currents. These
are multiplied by the appropriate numbers Nj of presynaptic cells in each popula-
tion and by averaged synaptic variables s̄type,j , and summed to create input currents
Itype,j to each population (the index j ∈ {1,2,3,4} now denotes the population). In-
dividual, evolving cell voltages are replaced by population-averaged, time-dependent
firing rates determined by frequency–current (f–I) curves ϕj (Isyn,j ), analogous to the
input–output function of (32). This yields an 11-dimensional system described by 4
firing rates νj (t), one inhibitory population-averaged synaptic variable s̄GABA(t), and
two variables s̄AMPA,j (t) and s̄NMDA,j (t) for each excitatory subpopulation (6 in all).

Further reduction to two populations relies on time scale separation (Jones 1994;
Guckenheimer and Holmes 1983). Time constants for AMPA and GABA are fast
(TAMPA = 2 ms, TGABA = 5 ms), while that for NMDA decay is slow (TNMDA = 100
ms); s̄AMPA,j (t) and s̄GABA,j (t) therefore rapidly approach quasi-steady states, as
in Rinzel’s reduction of HH in Sect. 2.2, This eliminates 3 ODEs for the excitatory
populations and 1 for the inhibitory population. Firing rates likewise track values set
by the f–I curves, since they are determined by TAMPA:

dνj

dt
= −(νj − ϕj (Isyn,j ))

TAMPA
, (47)

so νj (t) ≈ ϕj (Isyn,j (t)) for the non-selective and interneuron populations and the
ODEs for ν3 and νI drop out. Also, with stimuli on, the non-selective population
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Fig. 14 Contour maps of RR over the (γE,γI )-neuromodulation plane for the full network (a) and reduced
2-population system (b). Inhibition dominates at upper left where excitatory cells rarely exceed threshold,
at lower right excitation dominates and thresholds are rapidly crossed, giving high error rates; a ridge of
high RRs separates these low RR regions. From Eckhoff et al. (2011) (Color figure online)

typically has a less variable firing rate than the selective populations, so that s̄NMDA,3
can be fixed, leaving four ODEs for the synaptic variables and firing rates of the
selective populations:

ds̄j

dt
= − s̄j

TNMDA
+ 0.641(1 − s̄j )

νj

1000
, (48)

dνj

dt
= −νj − ϕj (Isyn,j )

Tpopf

; j = 1,2, (49)

where we write s̄NMDA,j = s̄j for brevity.2 The s̄j (t)’s and the firing rates νj (t) cor-
respond to the activity levels xj (t) in the LCA (30–31), and white noise is added as
in those SDEs.

To complete the reduction, currents must be estimated self-consistently. This is
complicated by the fact that Isyn,j in (49) contains terms that depend on both s̄j and
ϕj (Isyn,j ), so that the vector field is defined recursively. Ideally, we seek relation-
ships of the form Isyn,j = αj1s̄1 + αj2s̄2 + βj1ν1 + βj2ν2 + Iconst,j , as in Wong and
Wang (2006). Piecewise-smooth f–I curves help here (Eckhoff et al. 2011), since
they predict critical currents beyond which firing rates rise linearly. The parameters
γE,γI enter via the AMPA, NMDA and GABA components of the currents Iconst,j
and coefficients αjk,βjk . See Eckhoff et al. (2011) for details.

Computations of reward rates over the neuromodulation plane verify that (48–
49) capture key properties of the full spiking model: Fig. 14. Bifurcation diagrams
(Fig. 15) reveal that up to nine fixed points, including four sinks, can coexist, as
shown in the phase-plane projections of Fig. 16. The linear and approximately
parabolic components of each nullcline derive from sub- and super-threshold parts of

2Division by 103 accommodates the conventional units of millivolts, nanoamps, and nanosiemens for
conductances.
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Fig. 15 Bifurcation diagrams for the noise-free 2-population model for (γE,γI ) = (1,1) with E = 0 (a)
and E = 0.128 (b), showing s̄1 vs. stimulus strength μ. Pitchfork bifurcations and pairs of saddle-nodes
occur for E = 0 (a), finite coherence breaks the symmetry (b). Only the upper- and lower-most branches
are stable, cf. Fig. 16

Fig. 16 Dynamics of the 2-population model projected onto (s1, s2) plane, with ˙̄s1 = 0 nullcline vertical
line and curve with maximum at top (orange), ˙̄s2 = 0 nullcline horizontal line and curve with maximum at
right (green), sinks as filled circles, saddles with one- and two-dimensional stable manifolds as open tri-
angles and open circles. From top left clockwise, nullclines, fixed points, and sample trial paths are shown
without stimulus at (γE,γI ) = (1,1), with stimulus and E = 0 (symmetric) at (γE,γI ) = (1,1), without
stimulus at (γE,γI ) = (2,1.2), and with stimulus for E = 0.128 at (γE,γI ) = (1,1). From Eckhoff et al.
(2011) (Color figure online)

the f–I curves ϕj (Isyn,j ), as described in Eckhoff et al. (2011). In the top two and bot-
tom left panels of Fig. 16 (γE, γI ) = (1,1) (on the RR ridge of Fig. 14(b)) cases with-
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out stimulus, with identical stimuli E = 0,SNR = 0 and with E = 0.128,SNR > 0
are shown. States with both s̄j ’s low represent lack of response, possibly awaiting
stimulus appearance. With stimuli present, the basin of attraction of the low-low sink
shrinks, allowing noisy trials to reach the choice attractors s̄1 � s̄2 and s̄2 � s̄1, as
in Wong and Wang (2006); the basin of the correct attractor is larger for E > 0 (bot-
tom left panel). Finally, for (γE, γI ) = (2,1.2) (lower right region in Fig. 14(b) and
Fig. 16, bottom right panel), s̄1, s̄2 both high corresponds to impulsive behavior in
which near-random choices occur.

5.2 Physiological Constraints to Optimality?

The global dynamics of the reduced system (48–49), with its multiple attractors
(Fig. 16), differs qualitatively and quantitatively from the optimal DD process of (34).
While the dynamics near a saddle point approximate the approach of orbits to a drift
along one-dimensional DD dynamics, acceleration away from the saddle and decel-
eration toward an attractor cause suboptimal integration. Moreover, even if an attract-
ing one-dimensional subspace exists, deviations from it effectively blur the decision
thresholds, and firing rate bounds preclude negative and arbitrarily high activations,
preventing perfect subtraction as in (33) (van Ravenzwaaij et al. 2012, Figs. 5–7).
Adjustments in baseline activity and gain can keep accumulator states in near-linear
dynamical ranges (Servan-Schreiber et al. 1990; Cohen et al. 1990), but the fact that
nonlinear dynamics emerge from a biophysically based model suggests physiological
obstructions to optimality, especially when task conditions span a wide range (Deco
et al. 2013).

In this regard it is worth noting that choice attractors such as those of Fig. 16,
which can persist in the absence of stimuli (Fig. 15(a)), have been identified with
short-term working memory states (Usher and Cohen 1999; Wang 1999; Renart et al.
2003; Wong and Wang 2006; Deco et al. 2013). Working memory is clearly important
for delayed-response tasks such as those of Zhang and Barash (2004), Feng et al.
(2009), Rorie et al. (2010), Gao et al. (2011) and in many other aspects of our lives.
It is therefore plausible that cortical circuits have evolved to allow flexible multi-
attractor dynamics that are inconsistent with optimal strategies in artificially simple
tasks such as 2AFC.

6 Discussion: Some Omissions and Open Problems

In this article I have outlined some mathematical models in neuroscience that draw
on dynamical systems theory. Specifically, Sects. 2–3 describe mechanistic, cellular-
scale models for the generation of action potentials (spikes) and for electrical and
chemical synapses, discuss methods for reducing their dimension and hence simplify-
ing their analysis, and illustrate with a model of a central pattern generator for legged
locomotion. This represents the dominant approach to modeling among neuroscien-
tists and applied mathematicians. In contrast, Sect. 4 takes a high level perspective,
using stochastic ODEs and a drift-diffusion (DD) model to represent accumulation of
evidence in brain areas and to predict a strategy for maximizing reward rate in binary
perceptual choice tasks, enabled by the simplicity of the DD model. Such models
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exemplify the connectionist neural networks in wide use among cognitive psycholo-
gists. They can be justified empirically by their ability to fit behavioral data, and, more
directly, from observations of spike rates in animal studies. They can also be derived,
albeit non-rigorously, from cellular-scale spiking models, as sketched in Sect. 5.

These models illustrate the range of scales and models in mathematical neuro-
science, but as noted in Sect. 1, many important ideas and approaches are miss-
ing from this account. While spinal and thoracic CPGs generate functional motor
rhythms, brains exhibit cortical oscillations over a wide frequency range (2–100 Hz),
as detected via electroencephalography (scalp electrodes) and extracellular electrodes
recording local field potentials (Buzsaki 2006; Baker 2007; Fries et al. 2007). There
is much debate about the mechanisms and functions of such oscillations (Kopell et al.
2009; Whittington et al. 2009; Wang 2010), including their rôles in “binding” differ-
ent sensory modalities (Gray et al. 1989; Gray and Singer 1995; Fries 2005) and in
diseased states (McCarthy et al. 2011, 2012; Uhlhaas and Singer 2010), and their
generation by and effects on spikes from individual cells (Wang 2010). Further mod-
eling, with phase oscillators as well as HH-type equations, could shed light on these
cortical rhythms.

The study of how organisms learn about and adapt to changing environments is a
major area in which reinforcement learning (RL) (Sutton 1988; Sutton and Barto
1998) and the extended notion of hierarchical reinforcement learning (Botvinick
et al. 2009; Botvinick 2012) draw on studies of the dopamine neuromodulation sys-
tem (Schultz et al. 1997, 2000) to propose discrete dynamical updates following
rewarded behaviors. Dimension reduction can occur in RL (Swinehard and Abbott
2006). Goal-directed planning and searching also employ iterative models in which
different strategies are explored (Solway and Botvinick 2012). On the mechanistic
level, cortical rhythms also may be important in learning (Torta et al. 2009).

Probabilistic ideas are also widely used, perhaps more widely than those from
dynamical systems. An influential subculture considers probabilistic computations
based on Bayes’ rule (Bayes 1763) that offer normative accounts of task performance
as dynamic updating of priors. Models have been developed for sensori-motor con-
trol, e.g. Kording et al. (2004), Kording and Wolpert (2006), Wolpert (2007), and
proposed to describe stimulus identification, decision making and learning (Knill and
Pouget 2004; Liu et al. 2009; Yu et al. 2009; Bejjanki et al. 2011; Dayan 2012; Sol-
way and Botvinick 2012). These models are mostly empirical, but there is increasing
evidence that the brain can code probability distributions and perform Bayesian com-
putations, possibly via cortico-basal ganglia circuits (Pouget et al. 2003; Knill and
Pouget 2004; Ma et al. 2006, 2008; Bogacz and Gurney 2007; Bogacz and Larsen
2011; Coulthard et al. 2012). Information theory (Shannon 1948), originally sug-
gested by Weiner as a descriptor for sensory receptors (Wiener 1948, especially
Chap. III) has also been used to analyze spike trains and quantify their information
content in attempts to understand neural coding (Rieke et al. 1997, Chap. 3) as well
as learning (MacKay 2003). More generally, probabilistic methods including hidden
Markov models are useful in analyzing multi-electrode recordings in terms of transi-
tions among brain states, e.g. Seidemann et al. (1996), Gervasoni et al. (2004), Jones
et al. (2007).

In closing I note some open problems, focusing on ones that arise from the models
discussed in Sects. 2–5. A persistent difficulty is in identifying brain areas and neu-
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ral substrates in which specific “computations” are done. Excepting some specialized
sensory and sensori-motor circuits, such as those dedicated to reflexive actions, most
computations appear to activate multiple brain areas. For example, while neural firing
rates in area LIP are similar to DD processes (Shadlen and Newsome 2001; Roitman
and Shadlen 2002), pharmacological inactivation of LIP may not deprive an animal
of the ability to identify stimuli and respond appropriately (Balan and Gottlieb 2009)
(although it may slow him down). Computational models involving multiple brain
areas have been constructed for over 30 years (Rumelhart and McClelland 1986), but
there have been few attempts to analyze them mathematically (an exception is Liu
et al. (2008), which shows that the multi-layer network of Cohen et al. (1992) can be
reduced to a DD process with time-varying input). Moreover, until recently simul-
taneous neural recordings from multiple areas have not been available to constrain
multi-area models.

Here are suggestions some specific things to pursue:

• Improved theory and analytical methods for hybrid dynamical systems, especially
(large) networks of integrate-and-fire cells.

• Better descriptions of, and methods for extracting macroscopic activity states in
averaging over large cell populations.

• Nested sets of models for simple tasks, fitted to electrophysiological and behavioral
data.

• Further use of time scale separation in creating and analyzing models of cognitive
dynamics.

• Analyses of iterative learning algorithms as dynamical systems.

The joys celebrated herein are chiefly in the works of others, the trials come in my
attempts to understand them, and to contribute new ideas.
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