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On distributed Kalman filtering with
noisy communication.

My research alongside Professor Naomi Leonard
and Professor Vaibhav Srivastava (Michigan State
U.) considers Kalman filtering of a scalar lin-
ear stochastic process under noisy communication.
Specifically we’ve been investigating how communi-
cation noise degrades the performance of an existing
distributed estimation algorithm from the literature
and have developed a novel algorithm which miti-
gates these problems.

We consider the following scalar linear stochastic
process

ẋ(t) = v(t), x(0) = X0. (1)

where v(t) is a white noise process with variance
q ∈ R>0, and X0 is a Gaussian random variable with
mean x0 and variance σ. We then consider the prob-
lem of distributed state estimation of the state x(t)
using multiple communicating agents. These agents
can communicate over a fixed interaction graph which
is undirected and connected in the sense that there
exists a path from each node to every other node. We
assume that each agent i ∈ {1, . . . , N} samples the
process (1) at times k, k ∈ Z≥0, and collects a noisy
measurement yi(k) of the process x(k) defined by

yi(k) = x(k) + ni(k), for each i ∈ {1, . . . , N}, (2)

where {ni(k)}k∈Z≥0
are uncorrelated zero mean

Gaussian noises with variance r. We further assume
the noise sequences ni(k) are independent for differ-
ent i ∈ {1, . . . , N}.

We consider the two-stage strategy proposed in [1]
for estimation problems of the type given. During the
first stage, at time k each agent i computes the esti-
mate of process x(t) given measurements until time
k, i.e., x̂i(k|k), by computing a convex combination
of the predictive estimate of the current state using
observations until time k−1, i.e., x̂i(k|k−1) and the
current observation. The first stage is given by

x̂(k|k) = (1− `)x̂(k|k − 1) + `y(k), (3)

where ` ∈ (0, 1) is the Kalman gain. The second stage
comprises m steps of consensus using local estimates
x̂i(k|k). The consensus steps ensure that the local
estimates of each agent converge towards the average
of the group. However, we consider the case when
the consensus step itself has associated noise which
we represent as
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(4)
where h ∈ {1, . . . ,m}, Q is the doubly stochastic con-
sensus matrix, u(k+h/m) is the N -variate Gaussian
noise with zero mean and covariance IN and σ2

c is the
communication noise variance. The estimation error
at time k is defined by

x̃(k|k − 1) = x(k)1N − x̂(k|k − 1). (5)

We numerically investigated the performance of this
two-stage algorithm under under noisy communica-
tion for a set of three agents {1, 2, 3} communicating
over an undirected line graph. We took the convex-
ity parameter to be ` = 0.5 and performed 20, 000
Monte-Carlo simulations to estimate the trace of the
error covariance matrix. Fig. 1 shows the trace of the
error covariance matrix for k = 4 as a function of the
number of consensus steps m. It can be seen that for
large enough values of σc the trace of the error covari-
ance actually increases as more consensus steps are
performed, suggesting that the two-stage estimation
algorithm is not stabilizing, i.e., the trace of the error
covariance diverges as the number of consensus steps
are increased.

We modified the previous algorithm to mitigate the
effects of noisy communication. We keep the update
in the first stage of the algorithm the same as in (3).
We modify the second stage in the following way. We
define z(k|k) = x̂(k|k) for each k ∈ Z≥0. We update
z within the sampling epochs as follows:
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(6)
In (6), each agent remembers their estimate x̂(k|k) at
the end of the last sampling and re-injects it at each
consensus round. Loosely speaking, the intuition for
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Figure 1: Influence of consensus noise on error vari-
ance across 20,000 Monte Carlo runs for algorithm (4)
with N = 3, r = 1, and q = 1 for a simple undirected
line graph. We see that the error variance is divergent
as the number of consensus steps increases.

such an update is that starting from a deterministic
initial condition z(k|k) = x̂(k|k), after m rounds of
consensus the dominating component of the variance
of z(k + 1|k) is mσ2

c (see Fig. 1). By re-injecting
x̂(k|k) at each step, we ensure that the dominat-
ing component of the expected value of zi(k+ 1|k) is
m+1
N

∑N
j=1 x̂j(k|k), for each j ∈ {1, . . . , N}. Finally,

if we divide z(k+1) by (m+1), the resulting mean is
1
N

∑N
j=1 x̂j(k|k) and variance is mσ2

c/(m+ 1)2 which
goes to 0 as m→ +∞. Thus, for large m we recover
the performance of the noise-free algorithm. How-
ever, if m is small then consensus noise will still be
an issue. To mitigate its effect for small m, we set
the update x̂(k + 1|k) as the convex sum of x̂(k|k)
and z(k + 1|k) as below

x̂(k + 1|k) = ζx̂(k|k) + (1− ζ)
z(k + 1|k)

m+ 1
, (7)

where ζ ∈ (0, 1] is a constant. This algorithm has
two tunable parameters ` and ζ, and these parame-
ters can be chosen to minimize the asymptotic error
covariance of the estimator.

We now numerically investigate the performance
of the modified estimation algorithm. We again con-
sider an undirected line graph with 3 nodes. For
each value of m and σc we use the optimal ` and
ζ as determined by minimizing the asymptotic error
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Figure 2: Influence of consensus noise on error vari-
ance across 20,000 Monte Carlo runs for the updated
algorithm with N = 3, r = 1, and q = 1 for a simple
undirected line graph. Now even as σc increases the
error variance no longer diverges as more consensus
rounds are performed.

covariance. Fig. 2 shows for the modified estima-
tion algorithm the summed error variance metric vs.
the number of consensus steps m, with the color of
the lines designating the value of σc in (6). Com-
paring with Fig. 1, we see that the error variance
no longer increases as more consensus steps are per-
formed. Rather, the error variance vs. consensus
steps trend is much closer to the monotonically de-
creasing ideal. Even for larger values of σc we do
not see the error variance increase with additional
consensus, which is how an effective estimation algo-
rithm should perform.

There are several areas for continued research. We
would like to investigate centrality measures that pre-
dict the ordering of the performance of individual
agents. Another interesting area is to study estima-
tion problems in leader-follower networks in which
only a subset of agents (leaders) can sample the
stochastic process and investigate associated leader
selection problems.
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